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Abstract In physics, there are two distinct paradoxes, which are both known as the “Gibbs
paradox”. This article is concerned with only one of them: the false increase in entropy,
which is calculated from the process of combining two gases of the same kind consisting
of distinguishable particles. In the following, this paradox will be referred to as the Gibbs
paradox of the first kind (GP1). (Two particles are said to be distinguishable if they are either
non-identical, that is, if they have different properties, or if they are identical and there are
microstates which change under transposition of the two particles.) The GP1 is demonstrated
and subsequently analyzed. The analysis shows that, for (quantum or classical) systems of
distinguishable particles, it is generally uncertain of which particles they consist. The ne-
glect of this uncertainty is the root of the GP1. For the statistical description of a system
of distinguishable particles, an underlying set of particles, containing all particles that in
principle qualify for being part of the system, is assumed to be known. Of which elements
of this underlying particle set the system is composed, differs from microstate to microstate.
Thus, the system is described by an ensemble of possible particle compositions. The uncer-
tainty about the particle composition contributes to the entropy of the system. Systems for
which all possible particle compositions are equiprobable will be called harmonic. Classical
systems of distinguishable identical particles are harmonic as a matter of principle; quan-
tum or classical systems of non-identical particles are not necessarily harmonic, since for
them the composition probabilities depend individually on the preparation of the system.
Harmonic systems with the same underlying particle set are always correlated; hence, for
harmonic systems, the entropy is no longer additive and loses its thermodynamic meaning.
A quantity derived from entropy is introduced, the reduced entropy, which, for harmonic
systems, replaces the entropy as thermodynamic potential. For identical classical particles,
the equivalence (in particular with respect to the second law of thermodynamics) between
distinguishability and indistinguishability is proved. The resolution of the GP1 is demon-
strated applying the previously found results.
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1 Introduction and Outline

In physics, there are two distinct paradoxes, which are both known as the “Gibbs paradox”
[2, 3, 20] and are often confused with each other. In the following, the false increase in
entropy, which is calculated from the process of combining two gases of the same kind con-
sisting of distinguishable particles, will be referred to as the Gibbs paradox of the first kind
(GP1) [16, 21–23, 30, 38, 41, 44]. The Gibbs paradox of the second kind (GP2) addresses
the fact that the entropy increase, when combining two gases of different kinds, is indepen-
dent of the degree of similarity between the two kinds of gases, and that this entropy increase
vanishes discontinuously at the transition from similarity to sameness [4, 7, 18, 24, 25, 46].
The GP2 is not the subject of the present paper.

Classical statistical mechanics yields, for an ideal gas of pairwise distinguishable parti-
cles, the entropy (3.4), which is not extensive and therefore leads to the GP1 (see Sect. 3.1.1).
For an ideal gas of indistinguishable particles, however, one obtains the extensive entropy
(3.7), and so the GP1 does not emerge in this case. Schrödinger [38], Landé [23] and others
(e.g., Huang [21]) regarded classical particles as inherently distinguishable; thus, to them,
the GP1 posed a fundamental inconsistency of classical statistical mechanics. Gibbs [16],
Tetrode [43] and others (particularly explicitly, Hestenes [19]), on the other hand, inferred
from the GP1 that classical particles of the same kind are indistinguishable (in Gibbs’s ter-
minology: one has to use “generic phases”). In the opinion of the present author, neither
position is correct: in Sect. 5.6 it is shown that distinguishable and indistinguishable classi-
cal particles of the same kind are physically equivalent, and in Sect. 6.1.2 the resolution of
the GP1 for distinguishable classical particles of the same kind is presented.

The key to the resolution of the GP1 and the central idea of this article is the insight that,
for a system of distinguishable particles, there generally is no certainty of which particles the
system consists, that is, the system must be described by an ensemble of possible particle
compositions. The uncertainty about the particle composition contributes to the entropy of
the system (see Sect. 4.1) and entails that the system is correlated with certain other systems
(see Sects. 4.3.2 and 5.4). The consideration of this uncertainty in the statistical treatment
of systems of distinguishable particles leads to a new statistics, described in Sects. 4 and 5.
Within the framework of this statistics, the resolution of the GP1 is evident (Sect. 6).

In Sect. 2, the basic terms used in this article are introduced. In doing so, quantum and
classical mechanics are treated in parallel. At first, in Sect. 2.1.1, the state space of a quantum
system is defined as the direct sum of conventional many-particle state spaces. This allows
the system to consist of different particles in different microstates. Similarly, classical mi-
crostates are represented by points, which may lie in different phase spaces (Sect. 2.1.2).
In Sect. 2.2, the transposition of two particles, in particular, the transposition of a system
particle with a particle not belonging to the system, is defined. Two particles are called iden-
tical if all their state-independent properties agree; if in addition the transposition of the two
particles leaves every microstate unchanged, then the particles are called indistinguishable
(Sect. 2.5). While identical quantum particles are indistinguishable, identical classical par-
ticles can be assumed to be either distinguishable or indistinguishable (Sects. 2.6 and 2.7).

In Sect. 3, the GP1 is treated. At first, in Sect. 3.1.1, the GP1 is demonstrated for pair-
wise non-identical (quantum or classical) particles: in an ideal gas of pairwise non-identical
particles in equilibrium, a partition is first inserted and then removed; the removal of the
partition paradoxically seems to increase the entropy of the gas. This demonstration shows
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that the GP1, contrary to popular belief, is by no means only a problem of classical statisti-
cal mechanics, but may very well occur for quantum systems, too. (The interpretation of the
GP1 as a pointer away from classical mechanics towards quantum mechanics [23, 38] would
therefore even then be untenable, if the GP1 were insoluble.) The GP1 also arises for distin-
guishable identical (classical) particles (Sect. 3.1.2). Indistinguishable particles do not suffer
from the GP1 (Sect. 3.1.3). In Sect. 3.2, the reason for the seeming entropy decrease during
the partitioning of a system of pairwise non-identical particles is examined. As it turns out,
the reason is that, in the calculation of the entropy of the partitioned system, the uncertainty
about which particles are located in which subsystem is ignored; if this uncertainty is taken
into consideration, then the same entropy is obtained for the system after the partitioning as
before the partitioning. Thus, the GP1 leads to the insight that the particle composition of a
system of non-identical (more generally, distinguishable) particles is usually not determined
with certainty, that is, such a system must be described by an ensemble of possible particle
compositions.

Section 4 is concerned with systems of pairwise non-identical particles. At first, a closed
system S of N particles is regarded. Of which N particles S consists, may vary from mi-
crostate to microstate; only an underlying set P of N ≥ N pairwise non-identical particles,
containing all particles that in principle qualify for being part of S, is known. Part of the
entropy of S can directly be ascribed to the uncertainty about the particle composition of
S (Sect. 4.1). S will be called P -harmonic if all its

(
N

N

)
possible particle compositions are

equiprobable. Because particles cannot be located in one system with certainty while at the
same time being located in another system with certainty, harmonic systems with the same
underlying particle set are always correlated. Hence, the entropy of a total system, consist-
ing of two harmonic subsystems, is not additively composed of the entropies of the two
subsystems (Sect. 4.3.2). With the loss of additivity, the entropy also loses its thermody-
namic meaning for harmonic systems: for harmonic systems, no longer the entropy, but the
reduced entropy, defined in Sect. 4.3.3.1, is a thermodynamic potential (Sect. 4.3.3.2).

In Sect. 5, systems of pairwise distinguishable identical classical particles are discussed.
At first, a closed system S of N identical particles is regarded. R is the set of all particles
that are identical to the particles in S. Since microstates that arise from each other through
permutation of R-particles are experimentally indiscernible, it is postulated in Sect. 5.1
that they are equiprobable. From this postulate immediately follows the R-harmonicity of
systems of R-particles (Sect. 5.2); thus, those results of Sect. 4.3 that were deduced in par-
ticular for harmonic systems of non-identical particles hold for systems of distinguishable
identical classical particles in general (Sects. 5.4 and 5.5). In Sect. 5.6, it is shown that distin-
guishable and indistinguishable identical classical particles are physically equivalent, that is,
equivalent both mechanically (Sect. 5.6.5) and regarding the second law of thermodynamics
(Sect. 5.6.6.1).

Section 6 finally turns towards the GP1 again. Now, with the results of Sects. 4 and
5, it can easily be shown that there is no change in entropy when combining ideal gases
of the same kind, consisting of distinguishable identical classical particles (Sect. 6.1.2) or
of non-identical particles (Sect. 6.2.2): the entropy of systems of distinguishable particles
is neither extensive nor additive; in the calculation of the entropy change caused by the
process of combining, the contributions that originate from the non-extensivity and from the
non-additivity mutually compensate each other.

In Sect. 7, at first, the essential results are once again summarized. After that, the rele-
vance of the results, presented in this article, is discussed.
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2 States and Particles

2.1 States

2.1.1 Quantum Mechanics

The pure (quantum) states of a physical system are represented by vectors of the state space
H (a Hilbert space) of the system; if s is a pure state, then |s〉 ∈ H denotes a vector repre-
senting s. Those vectors of H that represent pure states are called state vectors. State vectors
are normalized and satisfy the symmetrization postulate (see Sect. 2.6.1). Two state vectors
represent the same pure state if and only if they arise from each other through multiplication
with a phase factor (i.e., a complex scalar of absolute value 1).

In this article, the state space is the direct sum of vector subspaces:

H =
N⊕

i=1

Ui . (2.1)

Each vector subspace Ui , in turn, is the many-particle state space (i.e., the tensor product of
the single-particle state spaces) of Ni particles pni,1 ,pni,2 , . . . ,pni,Ni

(ni,1, ni,2, . . . , ni,Ni
∈ N;

p1,p2, . . . are particle labels):

Ui =
Ni⊗

j=1

Vni,j
(2.2)

(Vni,j
denotes the single-particle state space of the particle pni,j

). The state vectors of Ui rep-
resent the pure states in which the system is composed of the particles pni,1 ,pni,2 , . . . ,pni,Ni

(referred to as Ui -particles in the following). In every pure state, the system has a well-
defined particle composition (and therefore also a well-defined particle number), that is,
every state vector lies in one of the vector subspaces U1, U2, . . . , UN. Conversely, all normal-
ized vectors of the vector subspaces U1, U2, . . . , UN that satisfy the symmetrization postulate
are state vectors. Those particles of which the system is composed in a pure state s (and no
other particles) are system particles in s.

The macrostate M of a quantum system is represented by exactly one density operator ρ

acting upon H. Density operators are positive-semidefinite Hermitian operators of trace 1;
thus, in particular, there is an orthonormal basis B of H consisting of eigenvectors of ρ. ρ is
restricted by the fact that it must be possible to choose B such that each B-vector lies in one
of the vector subspaces U1, U2, . . . , UN. (In the following, such a choice is assumed.) The
pure states represented by those B-vectors that are state vectors (i.e., those B-vectors that
satisfy the symmetrization postulate) are called microstates (of M). Normally, the set M of
microstates of M is not unambiguously determined, since there is some leeway in the choice
of B. If the B-vector |m〉 representing the microstate m ∈ M is an eigenvector of ρ with the
eigenvalue P , then P is the probability of m in M. B-vectors representing no microstates
have to correspond to the eigenvalue zero.

From the orthonormality of B it immediately follows that

〈m|n〉 = δm,n ∀m,n ∈ M (2.3)

(δm,n is the Kronecker delta and 〈m|n〉 is the inner product of the vectors |m〉 and |n〉 in Dirac
notation). Since ρ is positive-semidefinite, the probability PM(m) of m ∈ M in M satisfies
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the condition

PM(m) ≥ 0 ∀m ∈ M. (2.4)

Furthermore, the normalization condition
∑

m∈M

PM(m) = 1 (2.5)

is satisfied because the trace of ρ is 1. Finally, the spectral decomposition

ρ =
∑

m∈M

PM(m)|m〉 〈m| (2.6)

shows that M is unambiguously determined by its microstates and their probabilities.
The entropy S of M is defined as

S(M) := −k
∑

m∈M

PM(m) lnPM(m), (2.7)

where k is Boltzmann’s constant. Here and in the following, 0 ln 0 is set to zero. S(M) is
independent of the choice of the microstates and thus is well-defined [8].

Remark 2.1 The system generally is not composed of the same particles in all microstates
possessing a non-vanishing probability in M. Hence, in general, the particle composition
(and the particle number) of the system in M is undetermined, that is, M describes an ensem-
ble of possible particle compositions.

2.1.2 Classical Mechanics

Every (classical) microstate of a physical system is represented by exactly one point in one
of the phase spaces U1, U2, . . . , UN of the system. Conversely, each phase space point in

H :=
N⋃

i=1

Ui (2.8)

represents a microstate. If m is a microstate, then m̂ ∈ H denotes the phase space point
representing m.

Each phase space Ui is spanned by the generalized coordinates and the conjugate general-
ized momenta of certain particles, the Ui -particles. The points in Ui represent the microstates
in which the system is composed of the Ui -particles. The Ui -particles (and no others) are
system particles in those microstates. In the following, ζi denotes the set of Ui -particles and
〈ζi; �q, �p〉 the point in Ui with the phase space coordinates (i.e., the generalized coordinates
and momenta of the Ui -particles) �q, �p.

The macrostate M of a classical system is represented by a density function, which as-
signs to every phase space point m̂ ∈ H a (non-negative) probability density ρM(m̂). Hence,
a subset μ̂ of H possesses in M the probability

∫

μ̂

dHρM(m̂)
(2.8):=

N∑

i=1

∫

μ̂∩Ui

dUiρM(m̂)
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=
N∑

i=1

∫

{(�q, �p):〈ζi ;�q, �p〉∈μ̂}
d

dimUi
2 q d

dimUi
2 p ρM(〈ζi; �q, �p〉). (2.9)

H itself has to possess in M the probability

∫
dHρM(m̂) = 1 (2.10)

(normalization condition). The set μ := {m : m̂ ∈ μ̂} of all microstates that are represented
by the phase space points in μ̂ is assigned in M the same probability (2.9) as μ̂.

The entropy S of M is defined as

S(M) := −k

N∑

i=1

∫
dUiρM(m̂) ln

[
ρM(m̂)(2π�)

dimUi
2

]
, (2.11)

assuming an elementary phase space volume of (2π�)
dimUi

2 in the phase space Ui .

Remark 2.2 The phase space points possessing a non-vanishing probability density in M
generally do not all lie in the same phase space. Hence, in general, the particle composi-
tion (and the particle number) of the system in M is undetermined, that is, M describes an
ensemble of possible particle compositions.

2.2 Transpositions and Permutations of Particles

2.2.1 Transposition of Two Quantum Particles

Let |�〉 be a vector of the vector subspace Ui ⊂ H and ζi := {pni,1 ,pni,2 , . . . ,pni,Ni
} the

set of Ui -particles (cf. Sect. 2.1.1). Let the single-particle state spaces of the four parti-
cles pni,q

,pni,r
∈ ζi and ps ,pt /∈ ζi be isomorphic to each other such that the same basis

{|φ1〉, |φ2〉, . . .} can be chosen for them. Let {|χ1〉, |χ2〉, . . .} be a basis of the many-particle
state space of all Ui -particles except pni,q

and pni,r
. Because of (2.2), |�〉 may be written in

the following way as a linear combination of tensor product vectors (the cu,v,w are complex-
valued coefficients):

|�〉 =
∑

u,v,w

cu,v,w|pni,q
: φu〉 ⊗ |pni,r

: φv〉 ⊗ |all Ui-particles except pni,q
and pni,r

: χw〉.
(2.12)

The transposition σni,q ,ni,r
of pni,q

and pni,r
maps |�〉 to the vector

σni,q ,ni,r
|�〉 :=

∑

u,v,w

cu,v,w|pni,q
: φv〉 ⊗ |pni,r

: φu〉

⊗ |all Ui-particles except pni,q
and pni,r

: χw〉 (2.13)

of Ui . The transposition σni,q ,s of pni,q
and ps is only then defined for |�〉 if there is a vector

subspace Uj ⊂ H with the Uj -particles pni,1 ,pni,2 , . . . ,pni,q−1 ,ps ,pni,q+1 , . . . ,pni,Ni
. If this is

the case, then σni,q ,s maps |�〉 to the vector
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σni,q ,s |�〉 :=
∑

u,v,w

cu,v,w|ps : φu〉 ⊗ |pni,r
: φv〉

⊗ |all Ui-particles except pni,q
and pni,r

: χw〉 (2.14)

of Uj . Finally, the transposition σs,t of ps and pt trivially leaves |�〉 unchanged, that is,
σs,t |�〉 := |�〉.

If the transposition σ is defined for the state vector |s〉, then σ |s〉 is also a state vector
and σ maps the pure state s represented by |s〉 to the pure state σ(s) represented by σ |s〉;
thus σ(s) is determined by

|σ(s)〉 = eiϕσ |s〉 (ϕ ∈ R), (2.15)

where eiϕ is an undetermined phase factor.

2.2.2 Transposition of Two Classical Particles

Let m̂ be a point in the phase space Ui ⊂ H and ζi = {pni,1 ,pni,2 , . . . ,pni,Ni
} the set of Ui -

particles (cf. Sect. 2.1.2). Let the four particles pni,q
,pni,r

∈ ζi and ps ,pt /∈ ζi have the same
internal degrees of freedom. The transposition σni,q ,ni,r

of pni,q
and pni,r

maps m̂ to the phase
space point σni,q ,ni,r

(m̂) ∈ Ui . One obtains σni,q ,ni,r
(m̂) by interchanging the phase space co-

ordinates of m̂ associated with pni,q
and pni,r

; that is, the coordinates of m̂ associated with
pni,q

become the corresponding coordinates of σni,q ,ni,r
(m̂) associated with pni,r

, and vice
versa. The transposition σni,q ,s of pni,q

and ps is only then defined for m̂ if there is a phase
space Uj ⊂ H with the Uj -particles pni,1 ,pni,2 , . . . ,pni,q−1 ,ps ,pni,q+1 , . . . ,pni,Ni

. If this is the
case, then σni,q ,s (m̂) lies in Uj and is determined as follows: the coordinates of σni,q ,s (m̂)

associated with ps are equal to the corresponding coordinates of m̂ associated with pni,q
,

and the coordinates of σni,q ,s (m̂) associated with the other Uj -particles agree with the cor-
responding coordinates of m̂. Finally, the transposition σs,t of ps and pt trivially leaves m̂
unchanged, that is, σs,t (m̂) := m̂.

If the transposition σ is defined for the phase space point m̂, then σ maps the microstate
m represented by m̂ to the microstate σ(m) represented by σ(m̂); thus, σ(m) is determined
by

σ̂ (m) = σ(m̂). (2.16)

2.2.3 Particle Permutations

Permutations are compositions of transpositions. In the following, it is assumed that the
microstates of a quantum macrostate M are chosen such that, for every microstate m of M,
every particle permutation that is defined for m maps m to a pure state which is again a
microstate of M.

2.3 Processes and Particle Conservation

At any point in time, a (quantum or classical) system is in a particular macrostate. (In the
following, a system is occasionally linguistically identified with the macrostate it is in; for
example, the “entropy of a system” actually means the entropy of the macrostate the system
is in.) The temporal evolution of the macrostate of a system will be called a process; the
period during which an examined process takes place will be called the observation period.
A particle is relevant to an examined process if at any point in time during the observation
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period it is a system particle with a non-vanishing probability. In the present paper, it is
assumed that relevant particles can neither be created nor annihilated during the observation
period. Relevant particles do not have to be elementary; however, according to the foregoing
assumption, composite relevant particles (e.g., molecules composed of electrons and nuclei)
must not decay or convert into other particles during the observation period.

2.4 Particle Attributes

Particles possess attributes such as electric charge, position and velocity. If, for each particle,
the value of an attribute A is independent of the state, then A is referred to as an inner
attribute. In addition, a state-dependent attribute A may be declared as inner attribute if,
for each relevant particle, the value of A is defined and constant over the whole observation
period. Often a particularly convenient description of a system may be achieved by a suitable
choice of the inner attributes (see Sect. 2.6.2).

2.5 Identical and Indistinguishable Particles

Two particles are called identical if the values of all their inner attributes agree. H must be
so constituted that the transposition of two identical particles is defined for every vector in H
(quantum case) or every phase space point in H (classical case), respectively. Two identical
particles are called indistinguishable if every pure quantum state (every classical microstate)
is invariant under transposition of these two particles; otherwise the two particles are called
distinguishable. Two non-identical particles are always considered distinguishable.

2.6 Identical Particles in Quantum Mechanics

2.6.1 Symmetrization Postulate and Indistinguishability of Identical Quantum Particles

In quantum mechanics, the symmetrization postulate [28] claims that a state vector |s〉, under
the transposition σ of two identical particles that are both system particles in s, either stays
the same (bosons) or changes by the phase factor of −1 (fermions). (The symmetrization
postulate also holds if the two identical system particles are composite particles [12].) From
the symmetrization postulate and (2.15) it follows that

|σ(s)〉 = ±eiϕ |s〉 (ϕ ∈ R), (2.17)

i.e., |σ(s)〉 and |s〉 only differ by a phase factor and thus represent the same pure state

σ(s) = s (2.18)

(see Sect. 2.1.1). Hence, pure states are invariant under permutation of identical system
particles.

According to (2.14) and (2.15), the transposition of a system particle with an identical
particle that is not a system particle maps a pure state s to a pure state in which the par-
ticle composition of the system is different from that in s. However, since those two pure
states are experimentally indiscernible, they may be identified with one another. After that
identification, state vectors arising from each other through permutation of identical par-
ticles (system particles or not) always represent the same pure state; identical particles are
then indistinguishable. The present article adheres to this identification. (Without identifying
pure states arising from each other through permutation of system particles with identical
particles that are not system particles, identical particles generally would be pairwise distin-
guishable. Distinguishable identical quantum particles will be discussed elsewhere.)
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2.6.2 Consequences of the Choice of the Inner Attributes

Whether or not two particles are identical and thus obey the symmetrization postulate de-
pends on which particle attributes are declared as inner attributes. As will be shown below
by means of two examples, the choice of the inner particle attributes therefore also affects
which vectors of the state space are state vectors and which particles are relevant.

As a first example, consider a system of two electrons p1 and p2 in the pure state s: one
electron is in the single-particle state ψ and has z-spin up (i.e., the z-component of the spin
has the value +�

2 in ψ ), the other is in the single-particle state φ and has z-spin down.
Usually, p1 and p2 are considered identical and obey the symmetrization postulate. Since
electrons are fermions, s is represented by the antisymmetric state vector

|s〉 = 1√
2
(|p1 : ψ〉 ⊗ |p2 : φ〉 − |p1 : φ〉 ⊗ |p2 : ψ〉). (2.19)

If, however, the z-spin is declared as an inner attribute, then the two electrons are non-
identical and s is represented by the state vector

|s〉 = |p1 : ψ〉 ⊗ |p2 : φ〉 (2.20)

(assuming that p1 is the electron with z-spin up). In the first case (in which p1 and p2 are
identical), the vector (2.20) is not a state vector because it is not antisymmetric; in the second
case (in which the z-spin is an inner attribute), the vector (2.19) is inadmissible because for
this vector the value of the z-spin would be neither defined for p1 nor for p2 (see Sect. 2.4).
Of course, physical predictions do not depend on whether or not the z-spin is declared as
an inner attribute, and by which vectors of the state space pure states therefore must be
represented. (The proof of this claim is similar to [26].)

As a second example, consider the particle attribute “localization within a certain spatial
domain” with the possible values 1 (for “yes”) and 0 (for “no”). The value of this attribute
for a particular particle is 1 (0) if the particle is located with certainty inside (outside) the
regarded spatial domain. If the “localization within the system” is declared as an inner at-
tribute, then all particles outside the system are non-identical to all particles inside the sys-
tem. In this case, relevant particles are system particles over the whole observation period
with certainty (and not only with non-vanishing probability), so all particles outside the
system may be ignored (provided they do not interact with the system). If, however, the “lo-
calization within the system” is not an inner attribute, then there may exist identical particles
neither lying all inside nor lying all outside the system. From the symmetrization postulate
(applied to an appropriate superior system) it then follows that all these identical particles
are relevant. Of course, physical predictions do not depend on whether or not the “local-
ization within the system” is declared as an inner attribute, and whether certain particles
outside the system may therefore be ignored or must be accounted for [27].

2.7 Identical Particles in Classical Mechanics

The transposition σ of two identical particles maps a phase space point m̂ to a phase space
point σ(m̂) which is generally different from m̂. As long as each phase space point repre-
sents a distinct microstate (see Sect. 2.1.2), the classical microstate σ(m), defined by (2.16),
is generally different from m. In this case, identical classical particles are pairwise distin-
guishable.
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Microstates arising from each other through permutation of identical particles are exper-
imentally indiscernible [see (5.34) in Sect. 5.6.3]. Hence, these microstates may be identi-
fied with one another. After that identification, phase space points arising from each other
through permutation of identical particles represent the same microstate; identical classical
particles are then indistinguishable (cf. Sect. 5.6.2).

Planck [31, 32] (since about 1916) and others after him (e.g., Rushbrooke [34]) were of
the opinion that experimentally indiscernible microstates must be identified with one an-
other and that identical classical particles are therefore necessarily indistinguishable. Ehren-
fest [13], Schrödinger [37] and others (e.g., Ter Haar [42]) objected to this; their contention
was that classical particles are inherently distinguishable. Before Planck, Gibbs [16] already
regarded identical classical particles as indistinguishable in order to avoid the GP1. (This
reasoning was later supported particularly explicitly by Hestenes [19].) In the opinion of the
present author, all positions just mentioned are not correct regarding their claim to absolute-
ness. In fact, one has the choice of assuming identical classical particles to be distinguishable
or indistinguishable; in Sect. 5.6 it is shown that both possibilities are equivalent.

3 Gibbs Paradox of the First Kind (GP1)

3.1 Demonstration of the GP1

3.1.1 Non-identical Particles

Consider a vessel of volume V containing a (quantum or classical) particle of mass m with-
out internal degrees of freedom at (not too low) temperature T . The canonical partition
function of this system is

z(T ,V ) = V

(
mkT

2π�2

)3/2

(3.1)

[35]. [For the classical case, an elementary phase space volume of (2π�)3 is assumed.]
Now, let the vessel be filled with N (N � 1) pairwise non-identical particles. For sim-

plicity, let all N particles have the same mass m and no internal degrees of freedom (cf.
Remark 3.2). Further, let there be no interaction between the particles; the particles then
form an ideal gas with the canonical partition function

Z(T ,N,V ) = zN (3.1)=
[

V

(
mkT

2π�2

)3/2
]N

. (3.2)

As a general rule, one obtains the entropy S(T , . . .) of a system in canonical equilibrium
from its partition function Z(T , . . .) by

S(T , . . .) = ∂

∂T
(kT lnZ) (3.3)

[9]. In particular, (3.2) yields

S(T ,N,V ) = Nk

[
lnV + 3

2
ln

mkT

2π�2
+ 3

2

]
. (3.4)
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S(T ,N,V ) is not a homogeneous function of degree 1 in the variables N and V , that is,
the entropy is not extensive in the case of the ideal gas considered above. Assuming that the
entropy is additive, this leads to the GP1 as follows:
A vessel of volume V containing N pairwise non-identical non-interacting particles of the
same mass m is divided into two equal subsystems S1 and S2 by inserting a partition. Thus,
both subsystems have the same volume V

2 and each contains N
2 particles. (Strictly speaking,

there are also other possible distributions of the N particles on the two subsystems, for
example, N

2 − 1 particles in one subsystem and N
2 + 1 in the other [5]. Here and in the

following, this may be neglected.) The entropy of the total system consisting of S1 and S2

is additively composed of the entropies of the two subsystems and thus is 2S(T , N
2 , V

2 ). S1

and S2 can be recombined by removing the partition; the original vessel of total volume V

containing all N particles then emerges again. Paradoxically, the removal of the partition
seems to increase the entropy by

S(T ,N,V ) − 2S

(
T ,

N

2
,
V

2

)
(3.4)= Nk ln 2. (3.5)

(The entropy increase is paradoxical for the following reason: The system is in the same
macrostate after the removal of the partition as before its insertion and therefore must have
the same entropy at both times. Thus, if the entropy of the system increases when removing
the partition, then it must have decreased by the same amount before, when the partition was
inserted. However, a decrease in system entropy when inserting the partition contradicts the
second law of thermodynamics because the insertion of the partition is an adiabatic process.)

Remark 3.1 Actually, it is not necessary to remove the partition in order for a paradox
to arise, since, as can be shown similar to above, the insertion of the partition seems to
decrease the entropy by Nk ln 2 and thus already yields a contradiction to the second law of
thermodynamics. In the literature, however, the GP1 is always associated with the entropy
increase when combining two systems and not with the entropy decrease when dividing a
system; for that reason, the GP1 is also here presented in this conventional form.

Remark 3.2 One might object that particles having the same mass and no internal degrees of
freedom must be identical. This objection can be dealt with by assuming that the N particles
have pairwise different masses lying all so close to m that the entropy of the gas deviates
only negligibly (i.e., considerably less than Nk ln 2) from (3.4).

Remark 3.3 In Sect. 4, it is shown that the formulas (3.1), (3.2) and, as a consequence, (3.4)
only hold if there is no uncertainty about which particle is (about which N particles are)
located in the vessel.

Remark 3.4 A more extreme variant of the GP1 in which an irreversible process seems to
lead to an entropy decrease is described by Swendsen in [41].

3.1.2 Distinguishable Identical Particles

Since this article adheres to the indistinguishability of identical quantum particles (see
Sect. 2.6.1), distinguishable identical particles necessarily are classical particles. If there
are N distinguishable identical classical particles in the vessel, then one obtains the same
entropy (3.4) as for pairwise non-identical particles of equal mass (the derivation is the
same as in Sect. 3.1.1). Thus, the GP1 arises for distinguishable identical classical particles
as well.
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3.1.3 Indistinguishable Particles

If the N particles in the vessel are indistinguishable, then, compared to the non-identical
particles regarded in Sect. 3.1.1, each N ! microstates arising from each other through per-
mutation of the particles in the vessel coincide to one single microstate. Thus, for indistin-
guishable particles, the canonical partition function Z̃ is N ! times smaller than in (3.2):

Z̃(T ,N,V ) = 1

N !Z
(3.2)= 1

N !

[

V

(
mkT

2π�2

)3/2
]N

. (3.6)

[In the quantum case, the particle density is assumed to be so low and/or the temperature so
high that microstates with multiply occupied single-particle states only negligibly contribute
to the logarithm of the partition function [1]; otherwise the particles must be described by
Bose-Einstein or Fermi-Dirac statistics. In the classical case, there is no such restriction
of the scope of application of (3.6) regarding pressure and temperature because the set of
microstates with multiple occupancies, that is, the set of microstates for which at least two
particles have the same generalized coordinates and momenta, has measure zero.] The en-
tropy

S̃(T ,N,V )
(3.3),(3.6)= Nk

[
lnV + 3

2
ln

mkT

2π�2
+ 3

2

]
− k lnN !

Stirling≈ Nk

[
ln

V

N
+ 3

2
ln

mkT

2π�2
+ 5

2

]
(3.7)

resulting from Z̃ (Sackur-Tetrode equation) is extensive; thus, for indistinguishable particles
the GP1 does not arise.

Remark 3.5 In the derivation above, the partition function (3.6) and consequently the
Sackur-Tetrode equation (3.7) are ultimately based on the partition function (3.2), which
is generally not correct (cf. Remark 3.3). However, the Sackur-Tetrode equation is still cor-
rect for indistinguishable particles, as one may verify in the classical case by plugging (6.2)
into (5.60).

3.2 Physical Origin of the GP1

In order to attain a resolution of the GP1, it is useful to first illuminate the origin of the
paradox. For that purpose, consider again an ideal gas of N (N � 1) pairwise non-identical
(quantum or classical) particles of the same mass m without internal degrees of freedom (cf.
Remark 3.2). Let there be no uncertainty about of which N particles the ideal gas consists
(cf. Remark 3.3) and let the gas be confined to a vessel of volume V at temperature T . This
vessel is then divided into two equal subsystems S1 and S2 (N1 = N2 = N

2 , V1 = V2 = V
2 ) by

inserting a partition. According to (3.4), the entropy Sp of the gas previous to the partitioning
is

Sp = S(T ,N,V ) = Nk

[
lnV + 3

2
ln

mkT

2π�2
+ 3

2

]
. (3.8)

Let Sa be the entropy of the total system consisting of S1 and S2 after the partitioning; let
S1 and S2 be the entropies of the subsystems S1 and S2 . The GP1 arises if one calculates S1



Statistics of Distinguishable Particles and Resolution of the Gibbs 797

and S2 using (3.4) and then sums these two entropies in order to obtain Sa:

Sa
?= S1 + S2

?= S(T ,N1,V1) + S(T ,N2,V2) = 2S

(
T ,

N

2
,
V

2

)

(3.4)= Nk

[
lnV + 3

2
ln

mkT

2π�2
+ 3

2

]
− Nk ln 2. (3.9)

Comparison with Sp yields an entropy decrease (!) of

Sp − Sa
?= Nk ln 2 (3.10)

from the partitioning.
However, the calculation (3.9) is only correct if one knows which N

2 of the N particles
have landed in S1 and which in S2. In fact, there is no information about this (as long as no
relevant measurement is performed). Hence, after the partitioning, a complete counting of
the possible microstates of the total system consisting of S1 and S2 must take into account
all

(
N

N/2

)
possibilities of how the N particles can be distributed over the two subsystems.

This implies a canonical partition function that is larger by a factor of
(

N

N/2

)
[47], and thus,

according to (3.3), an entropy Sa that is larger by

k ln

(
N

N/2

)
= k

[
lnN ! − 2 ln

N

2
!
]

Stirling≈ k

[
N lnN − N − 2

(
N

2
ln

N

2
− N

2

)]

= Nk ln 2 (3.11)

than the entropy Sa calculated in (3.9), that is,

Sa = Sp. (3.12)

Hence, as expected, the entropy is not changed by the partitioning.
One recognizes that the origin of the GP1 lies in the incomplete counting of the possi-

ble microstates: in the calculation (3.9), the uncertainty about the identities of the particles
located in S1 (S2, respectively) was disregarded. [The uncertainty about the number of the
particles in S1 (S2, respectively) was disregarded as well by the assumption N1 = N2 = N

2 .
However, this uncertainty (as opposed to the previous one) only negligibly contributes to
Sa; its non-consideration is compensated by the Stirling approximation in (3.11) [5].] Thus,
the GP1 and its origin show that, for the statistical treatment of a system of non-identical
particles (Sect. 4), one has to take into account that the possible microstates may also dif-
fer with respect to the particle composition of the system. [The same holds for systems of
distinguishable identical classical particles (Sect. 5).]

Remark 3.6 In the equation chain (3.9), neither the first nor the second equals sign tagged
by a question mark is correct. For the entropy S1 of S1 it holds that

S1
(3.11)= S(T ,N1,V1) + Nk ln 2, (3.13)

because there are
(

N

N/2

)
possibilities of which particles can be located in S1 (see Sect. 4.3.1).

Correspondingly, it holds that

S2 = S(T ,N2,V2) + Nk ln 2. (3.14)
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Further, the entropy Sa of the total system is not the sum of the entropies of the two sub-
systems because the two subsystems are not independent of each other (see Sect. 4.3.2.4).
Namely, S2 contains exactly those N

2 particles that are not located in S1.

4 Statistics of Non-identical Particles

Let a set P of N pairwise non-identical (quantum or classical) particles be given. The ele-
ments of P are referred to as “particles of the kind P ” or “P -particles” for short. Further,
let a system S of N (N ≤ N) P -particles be given that is closed with respect to particle
exchange. From the closedness of S does not follow that there is certainty of which N of the
N P -particles S is composed. Only a change in the particle composition of S is prevented
by the closedness. More precisely, a change of the probabilities of the possible composi-
tions of S is prevented (see Sect. 4.2.1). [However, a change of these probabilities is still
possible despite the closedness of S if a measurement is performed on S or on a system
correlated with S. If, for example, a certain P -particle p first is a system particle of S with
a non-vanishing probability, and at a later point in time a measurement on another system
shows that p is located in that other system with certainty, then the probability of p being a
system particle of S collapses to zero at the time of that measurement. This is the EPR-effect
[14], which, in the form just described, also arises in classical statistical mechanics.]

In the following, (particle) compositions of systems are represented by sets of particles:
if, for example, S is composed of the particles p1,p2, . . . ,pN ∈ P , then {p1,p2, . . . ,pN } ⊂ P
is the composition of S. The elements of a composition ζ are referred to as “ζ -particles”. For
a pure quantum state or a classical microstate m, the phrasings “S has in m the composition
ζ ” or “m belongs to the composition ζ ” mean that the ζ -particles (and no other particles)
are system particles in m.

4.1 Entropy of a Macrostate

4.1.1 Quantum System

Let the (quantum) system S be in the macrostate M. Let ζ1, ζ2, . . . , ζ(N
N ) be the

(
N

N

)
compo-

sitions of S consisting of N P -particles. Let M be the set of microstates of M and μi ⊂ M
the set of those microstates of M that belong to the composition ζi . It holds that

μi ∩ μj = ∅ (i �= j). (4.1)

According to Sect. 2.1.1, each microstate of M belongs to a certain composition. Since S, by
hypothesis, consists of N P -particles, only the compositions ζ1, ζ2, . . . , ζ(N

N ) are admissible

for S, that is, microstates belonging to another composition possess the probability zero in
M. Thus, without loss of generality,

M =
(N

N )⋃

i=1

μi (4.2)

can be assumed from the outset.
Let PM(m) be the probability of the microstate m ∈ M in the macrostate M. The proba-

bility PM(ζi) that S has the composition ζi in M is

PM(ζi) =
∑

m∈μi

PM(m). (4.3)
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It holds that

(N
N )∑

i=1

PM(ζi)
(4.3)=

(N
N )∑

i=1

∑

m∈μi

PM(m)
(4.1),(4.2)=

∑

m∈M

PM(m)
(2.5)= 1. (4.4)

Further, let PM(m | ζi) be the conditional probability of the microstate m in the macrostate
M, given that S has the composition ζi , i.e.,

PM(m | ζi) =
{

PM(m)

PM(ζi )
for m ∈ μi

0 for m /∈ μi

(PM(ζi) �= 0). (4.5)

For PM(ζi) �= 0, it holds that

∑

m∈μi

PM(m | ζi)
(4.5)=

∑

m∈μi

PM(m)

PM(ζi)

(4.3)= 1. (4.6)

For PM(ζi) �= 0, let the conditional entropy S(M | ζi) of M with respect to ζi be defined as

S(M | ζi) := −k
∑

m∈μi

PM(m | ζi) lnPM(m | ζi). (4.7)

With this, one obtains for the entropy S of M,

S(M) =
(N

N )∑

i=1

PM(ζi)S(M | ζi) − k

(N
N )∑

i=1

PM(ζi) lnPM(ζi). (4.8)

Proof It holds that

S(M)
(2.7)= −k

∑

m∈M

PM(m) lnPM(m)

(4.1),(4.2)=
(4.5)

−k

(N
N )∑

i=1

∑

m∈μi

PM(m) ln[PM(m | ζi)PM(ζi)]

(4.5)= −k

(N
N )∑

i=1

∑

m∈μi

PM(ζi)PM(m | ζi) lnPM(m | ζi) − k

(N
N )∑

i=1

∑

m∈μi

PM(m) lnPM(ζi)

(4.7),(4.3)=
(N

N )∑

i=1

PM(ζi)S(M | ζi) − k

(N
N )∑

i=1

PM(ζi) lnPM(ζi).

[PM(ζi)PM(m | ζi) and PM(ζi)S(M | ζi) are set to zero for PM(ζi) = 0.] �

Thus, the entropy of M is composed of two contributions: the weighted arithmetic mean
of the conditional entropies and a contribution originating from the uncertainty about the
composition of S.
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Remark 4.1 PM(ζi) is well-defined, that is, independent of the choice of the microstates,
since, according to Sect. 2.1.1, PM(ζi) can be written as

PM(ζi)
(4.3)= Tr{ρ
i}, (4.9)

where ρ is the density operator representing M, 
i is the orthogonal projection onto the
many-particle state space of the ζi -particles and Tr{. . .} stands for “trace of . . .”. The
well-definedness of S(M | ζi) can be proven similarly to the well-definedness of PM(ζi)

and S(M) [8].

4.1.2 Classical System

Let the (classical) system S be in the macrostate M. Let ζ1, ζ2, . . . , ζ(N
N ) be the compositions

of S consisting of N P -particles and Ui the phase space spanned by the generalized coor-
dinates and momenta of the ζi -particles. Since S, by hypothesis, consists of N P -particles,
only the compositions ζ1, ζ2, . . . , ζ(N

N ) are admissible for S, that is, phase space points not
lying in one of the phase spaces U1, U2, . . . , U(N

N ) possess the probability density zero in M.
Thus,

H :=
(N

N )⋃

i=1

Ui (4.10)

can be taken as the set of all phase space points of S from the outset (cf. Sect. 2.1.2).
Let ρM(m̂) be the probability density of the phase space point m̂ ∈ H in the macrostate M.

The probability PM(ζi) that S has the composition ζi in M is

PM(ζi) =
∫

dUiρM(m̂). (4.11)

It holds that

(N
N )∑

i=1

PM(ζi)
(4.11)=

(N
N )∑

i=1

∫
dUiρM(m̂)

(2.9),(4.10)=
∫

dHρM(m̂)
(2.10)= 1. (4.12)

Further, let ρM(m̂ | ζi) be the conditional probability density of the phase space point m̂
in the macrostate M, given that S has the composition ζi , i.e.,

ρM(m̂ | ζi) =
{

ρM(m̂)

PM(ζi )
for m̂ ∈ Ui

0 for m̂ /∈ Ui

(PM(ζi) �= 0). (4.13)

For PM(ζi) �= 0, it holds that

∫
dUiρM(m̂ | ζi)

(4.13)=
∫

dUi

ρM(m̂)

PM(ζi)

(4.11)= 1. (4.14)

For PM(ζi) �= 0, let the conditional entropy S(M | ζi) of M with respect to ζi be defined as

S(M | ζi) := −k

∫
dUiρM(m̂ | ζi) ln

[
ρM(m̂ | ζi)(2π�)

dimUi
2

]
. (4.15)
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With this, one obtains for the entropy S of M, as in the quantum case,

S(M) =
(N

N )∑

i=1

PM(ζi)S(M | ζi) − k

(N
N )∑

i=1

PM(ζi) lnPM(ζi). (4.16)

The proof of (4.16) is similar to the proof of (4.8) in Sect. 4.1.1 and is therefore not repeated
here.

In the remainder of this section, only quantum systems will be considered. However, all
results also hold for classical systems; the proofs are similar to their quantum analogs.

4.2 Equilibrium State

Now, let the system S be isolated, i.e., closed also with respect to energy exchange. Let S

in the equilibrium state Q possess the fixed energy E, that is, all microstates in which the
energy of the system deviates (more than an inaccuracy δE) from E possess the probability
zero in Q. (An equilibrium state is a macrostate that is steady with respect to the second law
of thermodynamics.) Again, let ζ1, ζ2, . . . , ζ(N

N ) be the compositions of S consisting of N

P -particles, M the set of microstates of Q and μi ⊂ M the set of those microstates of Q
that belong to the composition ζi . Let μ∗

i ⊂ μi be the set of microstates of Q that belong to
ζi and are a priori possible. (A microstate of Q is referred to as a priori possible if its energy
lies between E − δE and E + δE.)

4.2.1 Composition Probabilities

The fundamental postulate of statistical mechanics states that, for an isolated system with
fixed energy and particle number in equilibrium (microcanonical equilibrium), all a priori
possible microstates are equiprobable. However, the fundamental postulate cannot directly
be applied to S because it implicitly assumes an ergodic system [10] and S is generally not
ergodic. Namely, a priori possible microstates belonging to different compositions cannot
pass into one another due to the closedness of S with respect to particle exchange.

A priori possible microstates belonging to the same composition ζi , on the other hand,
can pass into one another (unless S is subject to internal constraints; cf. Remark 4.7). Hence,
according to the fundamental postulate (in restricted form), these microstates have the same
probability in equilibrium. Thus, because of (4.3), it holds that

PQ(m) =
{

PQ(ζi)/|μ∗
i | for m ∈ μ∗

i

0 for m ∈ μi \ μ∗
i ;

i = 1,2, . . . ,

(
N

N

)
. (4.17)

The |μ∗
i | (i = 1,2, . . . ,

(
N

N

)
) in (4.17) are determined by the compositions ζ1, ζ2,

. . . , ζ(N
N ), by the energy E and, as the case may be, by the values of the alterable system para-

meters (for example, the volume or an external electric field may be alterable); however, the
composition probabilities PQ(ζ1),PQ(ζ2), . . . ,PQ(ζ(N

N )) are still undetermined. These prob-
abilities depend on the exact circumstances during the preparation of the system. [Since the
P -particles are pairwise non-identical, certain P -particles may preferentially have entered
the system during the system preparation due to their specific properties. Hence, composi-
tions containing these preferred P -particles have an increased probability at the time of the
isolation (see Sect. 6.2.3 for an example). Then, from the onset of the isolation, the com-
position probabilities are “frozen” because microstates belonging to different compositions
are no longer able to pass into one another.] Thus, it holds that:
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Theorem 4.2 In addition to the energy E and, if any, the values of the alterable system
parameters, the complete characterization of a microcanonical equilibrium state Q of S

requires the composition probabilities PQ(ζ1),PQ(ζ2), . . . ,PQ(ζ(N
N )).

Remark 4.3 Just as an isolated system does not need to have a fixed particle composition, it
also does not need to have a fixed energy or particle number. (Otherwise, for example, the
adiabatic process of dividing an isolated system into two isolated subsystems by inserting
an insulating partition would lead to an entropy decrease [5, 15] contradicting the second
law of thermodynamics.) For instance, an isolated system may very well be in a macrostate
whose microstates possess canonically distributed probabilities. (Without justification, the
opposite assertion is made, e.g., in [45].) For S, the fixed particle number N and in this
section (Sect. 4.2) the fixed energy E therefore were explicitly assumed.

4.2.2 Conditional Entropies

For PQ(ζi) �= 0, the conditional entropy of Q with respect to ζi is

S(Q | ζi)
(4.7),(4.5)= −k

∑

m∈μi

PQ(m)

PQ(ζi)
ln

PQ(m)

PQ(ζi)

(4.17)= −k
∑

m∈μ∗
i

1

|μ∗
i |

ln
1

|μ∗
i |

= k ln |μ∗
i |. (4.18)

Let S in the microcanonical equilibrium state Q(i) have the composition ζi with certainty,
i.e.,

PQ(i) (ζj ) = δij . (4.19)

Let the energy and the values of the alterable system parameters for Q(i) be the same as for
Q. Thus, the same microstates can be chosen for Q(i) as for Q; it then holds that

PQ(i) (m)
(4.17),(4.19)=

{
1/|μ∗

i | for m ∈ μ∗
i

0 otherwise.
(4.20)

Hence, the entropy of Q(i) is

S(Q(i))
(2.7)= −k

∑

m∈M

PQ(i) (m) lnPQ(i) (m)
(4.1),(4.2)= −k

(N
N )∑

j=1

∑

m∈μj

PQ(i) (m) lnPQ(i) (m)

(4.20)= k ln |μ∗
i |. (4.21)

Comparison of (4.18) with (4.21) shows:

Theorem 4.4 The conditional entropy of a microcanonical equilibrium state Q with re-
spect to a composition ζi [for which PQ(ζi) �= 0] equals the entropy of that microcanonical
equilibrium state which agrees with Q regarding the energy and the values of the alterable
system parameters, but in which the composition ζi is certain.

Theorem 4.4, derived for an isolated system with fixed energy, also holds in the canonical
case (if “energy” is replaced by “temperature”). The proof of this is similar to the micro-
canonical case and is therefore not repeated here.
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4.3 Harmonic Macrostates

Again, let S be a system of N P -particles that is closed with respect to particle exchange
(but not necessarily isolated). A macrostate M of S will be called P -harmonic if in M all
particle compositions consisting of N P -particles are equiprobable, that is, if

PM(ζ1) = PM(ζ2) = · · · = PM(ζ(N
N ))

(4.4)= 1
(
N

N

) . (4.22)

(Macrostates of systems of P -particles whose particle number is not fixed are called P -
harmonic if compositions consisting of the same number of P -particles are equiprobable.)

4.3.1 Entropy of a P -harmonic Macrostate

According to (4.8) and (4.22), the entropy of a P -harmonic macrostate M of S is

S(M) = S(M) + k ln

(
N

N

)
, (4.23)

where

S(M) := 1
(
N

N

)
(N

N )∑

i=1

S(M | ζi) (4.24)

is the arithmetic mean of all conditional entropies of M.

4.3.2 Composite System

Now, let two systems S1 and S2 of N1 and N2 (N1 + N2 ≤ N) P -particles be given that are
closed with respect to particle exchange. Let S1 and S2 be in the P -harmonic macrostates
M1 and M2. Except for the following condition, let there be no further correlation between
S1 and S2.

Condition 4.5 A particle cannot be located in S1 with certainty while at the same time
being located in S2 with certainty.

Let ζ1, ζ2, . . . , ζ(N
N1

) be the compositions of S1 consisting of N1 P -particles. Let M1

be the set of microstates of M1 and μi ⊂ M1 the set of those microstates of M1 that be-
long to ζi . Let ζ(m) be the composition to which m ∈ M1 belongs. Correspondingly, let
η1, η2, . . . , η(N

N2
) be the compositions of S2 consisting of N2 P -particles, M2 the set of mi-

crostates of M2 and νj ⊂ M2 the set of those microstates of M2 that belong to ηj . Let η(n)

be the composition to which n ∈ M2 belongs.
Let S1+2 be the total system consisting of S1 and S2, and θ1, θ2, . . . , θ( N

N1+N2
) the compo-

sitions of S1+2 consisting of N1 + N2 P -particles.

4.3.2.1 State Space of the Total System Let U1,i be the many-particle state space of the ζi -
particles that belongs to S1, U2,j the many-particle state space of the ηj -particles that belongs
to S2 and U1+2,l the many-particle state space of the θl-particles that belongs to S1+2. Since,
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by hypothesis, S1 consists of N1 P -particles, only the compositions ζ1, ζ2, . . . , ζ(N
N1

) are

admissible for S1. Thus,

H1 :=
(N
N1

)⊕

i=1

U1,i (4.25)

is an appropriate state space for S1 (cf. Sect. 2.1.1). Correspondingly,

H2 :=
(N
N2

)⊕

j=1

U2,j (4.26)

is an appropriate state space for S2. Due to Condition 4.5 the tensor product of H1 and H2

does not come into consideration as the state space for the total system S1+2; instead

H1+2 :=
(N
N1

)⊕

i=1

⊕

j∈{1,2,...,(N
N2

)}:
ζi∩ηj =∅

U1,i ⊗ U2,j (4.27)

is an appropriate state space for S1+2.
For m ∈ M1, n ∈ M2 and ζ(m) ∩ η(n) = ∅, |m〉 ⊗ |n〉 is a state vector of H1+2. (In

particular, |m〉 ⊗ |n〉 trivially satisfies the symmetrization postulate because the P -particles
are pairwise non-identical.) The pure state of S1+2 that is represented by |m〉⊗|n〉 is referred
to as m ⊗ n.

Remark 4.6 H1+2 is not of the form described in Sect. 2.1.1; compared to (2.1) and (2.2),
H1+2 has a somewhat more complicated structure, which ensures that in all pure states of
S1+2 the subsystems S1 and S2 have the assumed particle numbers N1 and N2. Alternatively,
instead of H1+2,

H′
1+2 :=

( N
N1+N2

)⊕

l=1

U1+2,l (4.28)

may be taken as the state space for S1+2. H′
1+2 is structured as described in Sect. 2.1.1 and

contains H1+2 as a vector subspace. However, in this case, all microstates that are repre-
sented by state vectors in H′

1+2 \ H1+2 must possess the probability zero because otherwise
S1 and S2 do not have the assumed particle numbers N1 and N2.

Remark 4.7 Since S1 and S2 are closed with respect to particle exchange, transitions be-
tween two pure states of S1+2 that differ with regard to the composition of S1 or S2 are
forbidden. In particular, these transitions are still forbidden even if the two pure states be-
long to the same composition of S1+2 (cf. Sect. 4.2.1).

4.3.2.2 Macrostate of the Total System The total system S1+2 is in the macrostate M1+2

which is defined as follows:

M1+2 = {m ⊗ n : m ∈ M1 ∧ n ∈ M2 ∧ ζ(m) ∩ η(n) = ∅} (4.29)
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is the set of the microstates of M1+2, and

PM1+2(m ⊗ n) = N!(N − N1 − N2)!
(N − N1)!(N − N2)!PM1(m)PM2(n) (4.30)

is the probability of m ⊗ n ∈ M1+2 in M1+2.

Proof According to (4.29) and the rules of probability calculus (marginalization), the prob-
ability of m ∈ M1 in M1+2 is

∑

n∈M2:
ζ(m)∩η(n)=∅

PM1+2(m ⊗ n)
(4.1),(4.2)=

(4.30)

∑

j∈{1,2,...,(N
N2

)}:
ζ(m)∩ηj =∅

∑

n∈νj

N!(N − N1 − N2)!
(N − N1)!(N − N2)!PM1(m)PM2(n)

(4.3)=
(

N

N2

)

(
N−N1

N2

)PM1(m)
∑

j∈{1,2,...,(N
N2

)}:
ζ(m)∩ηj =∅

PM2(ηj )

(4.22)= PM1(m) (4.31)

and, correspondingly, the probability of n ∈ M2 in M1+2 is PM2(n). Thus, if the total system
S1+2 is in the macrostate M1+2, then the two subsystems S1 and S2 are in the macrostates M1

and M2 as required.
Further, in M1+2, the conditional probability PM1+2(m | n) of the microstate m ∈ M1,

given that the microstate n ∈ M2 is certain, is

PM1+2(m | n)
(4.30)=

{
N!(N−N1−N2)!

(N−N1)!(N−N2)!PM1(m) for ζ(m) ∩ η(n) = ∅
0 otherwise.

(4.32)

Hence, PM1+2(m | n) is the same for all n ∈ M2 that are compatible with m regarding Con-
dition 4.5; an analogous statement holds for the conditional probability PM1+2(n | m). Thus,
in M1+2, S1 and S2 are correlated only by Condition 4.5 as required.

Furthermore, M1+2 is well-defined: According to Sect. 4.3.2.1, all elements of M1+2 are
pure states of S1+2. For m ⊗ n,m′ ⊗ n′ ∈ M1+2, it holds that

〈
m⊗n|m′⊗n′〉 = (

e−iϕ〈m|⊗〈n|)
(
eiϕ′ ∣∣m′〉⊗∣∣n′〉

)
= ei(ϕ′−ϕ)

〈
m|m′〉 〈n|n′〉

(2.3)= ei(ϕ′−ϕ) δm,m′ δn,n′ = δm⊗n,m′⊗n′ (ϕ,ϕ′ ∈ R); (4.33)

thus, the microstates of M1+2 satisfy the condition (2.3). The condition (2.4) and the normal-
ization condition

∑

m⊗n∈M1+2

PM1+2(m⊗n)
(4.29),(4.31)=

∑

m∈M1

PM1(m)
(2.5)= 1 (4.34)

are also fulfilled for M1+2. �
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4.3.2.3 P -harmonicity of the Total System The total system S1+2 is P -harmonic.

Proof Let ξl ⊂ M1+2 be the set of those microstates of M1+2 that belong to the composition
θl . For each composition θl of S1+2 there are

(
N1+N2

N1

)
decompositions

(ζml,z
, ηnl,z

); z = 1,2, . . . ,

(
N1 + N2

N1

)
,

ml,z ∈
{

1,2, . . . ,

(
N

N1

)}
, nl,z ∈

{
1,2, . . . ,

(
N

N2

)}
(4.35)

with

ζml,z
∪ ηnl,z

= θl and ζml,z
∩ ηnl,z

= ∅. (4.36)

Hence, the probability PM1+2(θl) that S1+2 has the composition θl in M1+2 is

PM1+2(θl)
(4.3)=

∑

m⊗n∈ξl

PM1+2(m ⊗ n)

(4.29),(4.35),(4.36)=
(
N1+N2

N1
)

∑

z=1

∑

m∈μml,z

∑

n∈νnl,z

PM1+2(m ⊗ n)

(4.30),(4.3)=
(
N1+N2

N1
)

∑

z=1

N!(N − N1 − N2)!
(N − N1)!(N − N2)!PM1(ζml,z

)PM2(ηnl,z
)

(4.22)=
(

N1 + N2

N1

)
N!(N − N1 − N2)!

(N − N1)!(N − N2)!
1

(
N

N1

)
1

(
N

N2

)

= 1
(

N

N1+N2

) . (4.37)

Thus, PM1+2(θl) is independent of l, and so all compositions of S1+2 consisting of N1 + N2

P -particles have the same probability 1

( N
N1+N2

)
, i.e., S1+2 is P -harmonic. �

4.3.2.4 Entropy of the Total System The entropy of the total system S1+2 is

S(M1+2) = S(M1) + S(M2) − k ln
N!(N − N1 − N2)!

(N − N1)!(N − N2)! . (4.38)

Proof It holds that

S(M1+2)
(2.7)= − k

∑

m⊗n∈M1+2

PM1+2(m ⊗ n) lnPM1+2(m ⊗ n)

(4.30),(4.29)= − k
∑

m⊗n∈M1+2

PM1+2(m ⊗ n) ln
N!(N − N1 − N2)!

(N − N1)!(N − N2)!

− k
∑

m∈M1

lnPM1(m)
∑

n∈M2:
ζ(m)∩η(n)=∅

PM1+2(m ⊗ n)
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− k
∑

n∈M2

lnPM2(n)
∑

m∈M1:
ζ(m)∩η(n)=∅

PM1+2(m ⊗ n)

(2.5),(4.31)= − k ln
N!(N − N1 − N2)!

(N − N1)!(N − N2)!
− k

∑

m∈M1

PM1(m) lnPM1(m) − k
∑

n∈M2

PM2(n) lnPM2(n)

(2.7)= S(M1) + S(M2) − k ln
N!(N − N1 − N2)!

(N − N1)!(N − N2)! .

�

Remark 4.8 The entropy of the total system S1+2 is not additively composed of the entropies
of the two subsystems S1 and S2 because S1 and S2 are correlated due to Condition 4.5.
Only in the limiting case N � N1 + N2 is this correlation negligible and the entropy ap-
proximately additive.

4.3.3 Reduced Entropy

4.3.3.1 Definition and Properties Consider again the system S of N P -particles. Let the
reduced entropy R of a P -harmonic macrostate M of S be defined as

R(M) := S(M) − k ln
N!

(N − N)! . (4.39)

Plugging (4.23) into (4.39) yields

R(M) = S(M) − k lnN !. (4.40)

The reduced entropy (in contrast to the entropy) is additive for P -harmonic systems that
are correlated only by Condition 4.5; instead of (4.38), it holds that

R(M1+2)
(4.39)= S(M1+2) − k ln

N!
(N − (N1 + N2))!

(4.38)= S(M1) + S(M2) − k ln
N!(N − N1 − N2)!

(N − N1)!(N − N2)! − k ln
N!

(N − N1 − N2)!
= S(M1) + S(M2) − k ln

N!
(N − N1)! − k ln

N!
(N − N2)!

(4.39)= R(M1) + R(M2). (4.41)

Furthermore, the difference �R between the reduced entropies of two P -harmonic
macrostates Mbefore and Mafter of S agrees with the entropy difference �S of these
macrostates:

�R = R(Mafter) − R(Mbefore)
(4.39)= S(Mafter) − S(Mbefore) = �S. (4.42)

[N as well as N are the same for Mbefore and Mafter because of particle conservation (see
Sect. 2.3) and the closedness of S with respect to particle exchange.] Physical predictions do
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not depend on the absolute value of the entropy but only on entropy differences. Hence, due
to (4.42), the reduced entropy of P -harmonic closed systems is equivalent to the entropy.
This equivalence combined with the additivity (4.41) makes the reduced entropy for P -
harmonic systems a thermodynamic potential (see Sect. 4.3.3.2).

Remark 4.9 The reduced entropy, expressed by formula (4.40), does not (directly) depend
on N. Thus, under certain circumstances, the reduced entropy (in contrast to the entropy)
can be determined even without knowledge of N.

4.3.3.2 Thermodynamic Description of P -harmonic Systems by Means of the Reduced En-
tropy For a P -harmonic system with fixed particle number, the composition probabilities
are stipulated by (4.22); thus, a microcanonical equilibrium state of the system is already
completely characterized by the energy E, the particle number N and, if any, the values of
the alterable system parameters [cf. Theorem 4.2].

As is known, the equilibrium entropy S as a function of its natural variables E,N, . . . is
for a system of indistinguishable particles a thermodynamic potential (in the broader sense),
that is, all thermodynamic properties of the system result from the partial derivatives of
S(E,N, . . .). However, as will be shown below, for a P -harmonic system, the partial deriva-
tives of the reduced entropy R(E,N, . . .) yield the thermodynamic properties of the system.
Due to (4.39), S(E,N, . . .) and R(E,N, . . .) differ in the partial derivative with respect to
the particle number N . Hence, for P -harmonic systems, in particular − ∂S

∂N
/ ∂S

∂E
relinquishes

its thermodynamic interpretation as chemical potential to − ∂R
∂N

/ ∂R
∂E

.
Because of the energy and particle conservation (see Sect. 2.3), the alteration of the

energy E1 and the particle number N1 of a system S1 always causes a change in the energy
E2 and the particle number N2 of another system S2 absorbing (releasing) the particles and
the energy from (to) S1. Let S2 be chosen such that the total system S1+2 consisting of S1

and S2 is isolated. It then holds for the variations of the energies and the particle numbers of
S1 and S2

�N1 = −�N2 and �E1 = −�E2. (4.43)

According to the second law of thermodynamics, the exchange of energy and particles be-
tween S1 and S2 leads to an entropy change

�S1+2 ≥ 0 (4.44)

in S1+2. Now, let it be assumed that before and after the exchange, S1 and S2 each are in
microcanonical equilibrium and are correlated only by Condition 4.5. Further, let it be as-
sumed that before and after the exchange, both systems (and thus, according to Sect. 4.3.2.3,
also the total system S1+2) are P -harmonic. Let S1(E1,N1, . . .) and S2(E2,N2, . . .) be the
entropies, and R1(E1,N1, . . .) and R2(E2,N2, . . .) the reduced entropies of S1 and S2. For
small changes of the energy and the particle number, �S1+2 can be expressed by the partial
derivatives of R1 and R2 as follows:

�S1+2
(4.42)= �R1+2

(4.41)= �R1 + �R2

≈ ∂R1

∂E1
�E1 + ∂R1

∂N1
�N1 + ∂R2

∂E2
�E2 + ∂R2

∂N2
�N2. (4.45)
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This relation turns the reduced entropy into a thermodynamic potential. As usual, one iden-
tifies T1 := 1/

∂R1
∂E1

with the temperature and μ1 := −T1
∂R1
∂N1

with the chemical potential of S1

(correspondingly, for S2, T2 := 1/
∂R2
∂E2

and μ2 := −T2
∂R2
∂N2

). With this, one obtains

�S1+2
(4.45)= 1

T1
�E1 − μ1

T1
�N1 + 1

T2
�E2 − μ2

T2
�N2

(4.43)=
(

1

T1
− 1

T2

)
�E1 −

(
μ1

T1
− μ2

T2

)
�N1. (4.46)

If, at first, S1 and S2 can only exchange energy but no particles, then it holds that
�N1 = 0. From (4.46) it then follows due to (4.44) that energy flows from the system with
higher temperature to the system with lower temperature. If, after S1 and S2 have reached
thermal equilibrium (T1 = T2), one enables in addition to the energy exchange an exchange
of particles between the two systems, then it correspondingly follows that the system with
higher chemical potential loses particles to the system with lower chemical potential.

Because, according to (4.38), a particle exchange between S1 and S2 changes the corre-
lation between the two systems, �S1+2 is not the sum of the entropy changes that S1 and
S2 each individually experience through the particle exchange. Thus, �S1+2 cannot be ex-
pressed analogously to (4.45) by the partial derivatives of S1 and S2. For that reason, −T1

∂S1
∂N1

and −T2
∂S2
∂N2

lose for S1 and S2 the thermodynamic interpretation as chemical potential; in-

stead, as stated above, −T1
∂R1
∂N1

and −T2
∂R2
∂N2

assume this role. To summarize:

Theorem 4.10 For harmonic systems of non-identical particles, no longer the entropy, but
the reduced entropy as a function of its natural variables E, N , . . . is a thermodynamic
potential.

Other thermodynamic potentials have to be replaced in an analogous manner; for exam-
ple, the free energy by the reduced free energy E(T ,N, . . .) − T R(T ,N, . . .).

Remark 4.11 Cheng in [6] also defines a “reduced entropy” for classical systems of distin-
guishable particles. However, his definition is based on an entropy that does not agree with
(4.16).

Remark 4.12 Swendsen in [39] proposes a new, unfortunately somewhat imprecise defin-
ition of entropy. At least for a classical ideal gas of distinguishable particles, the entropy
defined by Swendsen agrees with the reduced entropy. Swendsen’s redefinition of entropy
is criticized by Nagle in [29]; Nagle shows by means of several thought experiments that
Swendsen’s redefinition fails for non-harmonic systems. Swendsen’s response [40] to this
criticism suggests that Swendsen in [39] implicitly assumed harmonic systems.

Therefore, at this point, the reader is reminded that the scope of application of the reduced
entropy is limited to harmonic systems and that harmonic systems still have an entropy
(differing from the reduced entropy).

5 Statistics of Distinguishable Identical Classical Particles

Let a set R of N pairwise distinguishable identical classical particles be given. Let every
R-particle be non-identical to every particle not belonging to R. Further, let a system S
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of N (N ≤ N) R-particles be given that is closed with respect to particle exchange. Let
ζ1, ζ2, . . . , ζ(N

N ) be the compositions of S consisting of N R-particles and Ui the phase
space spanned by the generalized coordinates and momenta of the ζi -particles. As reasoned
in Sect. 4.1.2,

H :=
(N

N )⋃

i=1

Ui (5.1)

can be taken as the set of all phase space points of S. For simplicity, it is assumed in the
following that the R-particles have no internal degrees of freedom and thus, the phase spaces
U1, U2, . . . , U(N

N ) are all 6N -dimensional.

5.1 Postulate for Distinguishable Identical Classical Particles

For a given point in time, let the positions and conjugate momenta of the particles in S

be known. Since the R-particles are identical, it cannot in principal be known which N of
the N R-particles are located in S or by which R-particle a particular conjugate position-
momentum pair is occupied. Since no occupation alternative should be favored over the
others, it is reasonable to consider all occupation possibilities equally:

Postulate 5.1 In every macrostate, phase space points arising from each other through per-
mutation of distinguishable identical classical particles possess the same probability den-
sity.

5.2 Harmonicity

Let S be in the macrostate M. 〈ζi; �q, �p〉 denotes the point in Ui with the coordinates �q, �p.
For the composition probabilities of S, it holds that

PM(ζi)
(4.11)=

∫
dUiρM(m̂) =

∫
d3Nq d3Np ρM(〈ζi ; �q, �p〉)

Postulate 5.1=
∫

d3Nq d3Np ρM(〈ζj ; �q, �p〉) =
∫

dUj ρM(m̂)

(4.11)= PM(ζj ) ∀i, j ∈
{

1,2, . . . ,

(
N

N

)}
(5.2)

and thus

PM(ζ1) = PM(ζ2) = · · · = PM(ζ(N
N ))

(4.12)= 1
(
N

N

) , (5.3)

i.e., M is R-harmonic. The generalization to systems whose particle number is not fixed is
unproblematic and yields:

Theorem 5.2 A system of distinguishable identical classical particles of the kind R is al-
ways R-harmonic.
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5.3 Minimal State

5.3.1 Definition

Let M be a macrostate of S. For the moment, let it be assumed that the underlying particle set
R of S consists only of N (instead of N) particles. (Thus, the size of R is assumed minimal;
if R would consist of less particles, then the particle number of S could no longer be N .)
Without loss of generality, let R consist of the particles of the composition ζ1. Then, instead
of (5.1),

H := U1 (5.4)

can be taken as the set of all phase space points of S.
Let the minimal state M associated with M (which refers to an underlying particle set of

N particles) be defined through

ρM(m̂) := ρM(m̂ | ζ1) ∀m̂ ∈ H. (5.5)

It holds that

ρM(m̂)
(5.5)= ρM(m̂ | ζ1)

(4.13),(5.4)= ρM(m̂)

PM(ζ1)

(5.3)=
(

N

N

)
ρM(m̂) ∀m̂ ∈ H. (5.6)

M is well-defined by (5.5): M satisfies the normalization condition
∫

dHρM(m̂)
(5.4),(5.5)=

∫
dU1ρM(m̂ | ζ1)

(4.14)= 1 (5.7)

and further complies with Postulate 5.1, because, if m̂ ∈ H and n̂ ∈ H arise from each other
through permutation of R-particles, then it holds that

ρM(m̂)
(5.6)=

(
N

N

)
ρM(m̂)

Postulate 5.1=
(

N

N

)
ρM(̂n)

(5.6)= ρM(̂n). (5.8)

5.3.2 Entropy of a Macrostate

Now, let R consist of all N particles again. For each macrostate M of S it holds that

ρM(〈ζi; �q, �p〉 | ζi)
(4.13)= ρM(〈ζi; �q, �p〉)

PM(ζi)

(5.3)=
(

N

N

)
ρM(〈ζi; �q, �p〉)

Postulate 5.1=
(

N

N

)
ρM(〈ζ1; �q, �p〉)

(5.4),(5.6)= ρM(〈ζ1; �q, �p〉) ∀i ∈
{

1,2, . . . ,

(
N

N

)}
. (5.9)

From this it follows that

S(M | ζi)
(4.15)= − k

∫
d3Nq d3Np ρM(〈ζi; �q, �p〉 | ζi) ln

[
ρM(〈ζi; �q, �p〉 | ζi)(2π�)3N

]

(5.9)= − k

∫
d3Nq d3Np ρM(〈ζ1; �q, �p〉) ln

[
ρM(〈ζ1; �q, �p〉)(2π�)3N

]
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(5.4),(2.11)= S(M) ∀i ∈
{

1,2, . . . ,

(
N

N

)}
(5.10)

and thus

S(M)
(4.24)= 1

(
N

N

)
(N

N )∑

i=1

S(M | ζi)
(5.10)= S(M). (5.11)

Hence, one obtains for the entropy of M

S(M)
(4.23), Theorem 5.2= S(M) + k ln

(
N

N

)
(5.11)= S(M) + k ln

(
N

N

)
. (5.12)

5.3.3 Equilibrium State

Let S be in the microcanonical equilibrium state Q with the energy E. Let μ∗
i be the set of all

microstates of S that belong to ζi and are a priori possible in Q (cf. Sect. 4.2). Let μ̂∗
i ⊂ Ui

be the set of phase space points that represent the microstates of μ∗
i , and

∥
∥μ̂∗

i

∥
∥ :=

∫

μ̂∗
i

dUi (5.13)

the phase space volume of μ̂∗
i . As reasoned in Sect. 4.2.1, according to the fundamental pos-

tulate (in restricted form), all microstates of μ∗
i are equiprobable. Thus, it holds analogously

to (4.17) that

ρQ(m̂)
(4.11)=

{
PQ(ζi)/‖μ̂∗

i ‖ for m̂ ∈ μ̂∗
i

0 for m̂ ∈ Ui \ μ̂∗
i ;

i = 1,2, . . . ,

(
N

N

)
. (5.14)

For the moment, let it be assumed again that R consists only of N (instead of N) par-
ticles. Without loss of generality, let R, as in Sect. 5.3.1, consist of the particles of the
composition ζ1 such that again H [cf. definition (5.4)] can be taken as the set of all phase
space points of S. Apart from that, let S be unaltered in the microcanonical equilibrium with
the energy E (equilibrium state Q′).

Since all microstates of S belong to the same composition ζ1, microstates that are a priori
possible in Q′ can generally pass into one another; thus, according to the fundamental postu-
late, all microstates that are a priori possible in Q′ are equiprobable. Due to (5.4), the set of
microstates that are a priori possible in Q′ agrees with μ∗

1; thus, because of the normalization
condition (2.10), it holds that

ρQ′(m̂) =
{

1/
∥
∥μ̂∗

1

∥
∥ for m̂ ∈ μ̂∗

1

0 for m̂ ∈ H \ μ̂∗
1.

(5.15)

Comparison of (5.15) with (5.14) shows that

ρQ′(m̂)
(5.4)= ρQ(m̂)

PQ(ζ1)

(5.3)=
(

N

N

)
ρQ(m̂) ∀m̂ ∈ H (5.16)

and hence

ρQ(m̂)
(5.6)=

(
N

N

)
ρQ(m̂)

(5.16)= ρQ′(m̂) ∀m̂ ∈ H. (5.17)
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Thus, it holds that:

Theorem 5.3 The minimal state Q associated with a microcanonical equilibrium state Q
of S is identical to that microcanonical equilibrium state of S that agrees with Q regarding
the energy and the values of the alterable system parameters, but for which an underlying
particle set R of only N (instead of N) particles is assumed.

Theorem 5.3, derived for an isolated system with fixed energy, also holds in the canonical
case (if “energy” is replaced by “temperature”). The proof of this is similar to the micro-
canonical case and is therefore not repeated here.

5.4 Entropy of a Composite System

Now, let two systems S1 and S2 of N1 and N2 (N1 + N2 ≤ N) R-particles be given. Let S1

be in the macrostate M1 and S2 in the macrostate M2. If, apart from Condition 4.5, there is
no further correlation between S1 and S2, then, as for harmonic systems of non-identical
particles (Sect. 4.3.2.4), it holds for the entropy of the total system consisting of S1 and S2

that

S(M1+2) = S(M1) + S(M2) − k ln
N!(N − N1 − N2)!

(N − N1)!(N − N2)! . (5.18)

The proof of (5.18) is similar to the proof of (4.38); Theorem 5.2 guarantees the harmonicity
of M1 and M2 required for the proof.

5.5 Reduced Entropy

Consider again the system S of N R-particles. The reduced entropy R of a macrostate M
of S is defined as for harmonic macrostates of systems of non-identical particles through
(4.39). Plugging (5.12) into (4.39) then yields

R(M) = S(M) − k lnN !. (5.19)

The reduced entropy has the properties given in Sect. 4.3.3.1 and therefore replaces the
entropy as thermodynamic potential also for systems of distinguishable identical classical
particles [cf. Theorem 4.10].

5.6 Equivalence Between Distinguishability and Indistinguishability of Identical Classical
Particles

5.6.1 Partitioning of the Phase Space Points of S into Classes

Let the equivalence relation ∼ be defined on the set H of all phase space points of S through:

Definition 5.4 For m̂, n̂ ∈ H, it holds that m̂ ∼ n̂ if and only if m̂ and n̂ arise from each other
through permutation of R-particles.

The relation ∼ partitions H into equivalence classes; the equivalence class of m̂ ∈ H is

[m̂] := {̂n ∈ H : n̂ ∼ m̂} . (5.20)
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The elements of [m̂] are called representatives of [m̂]. Further, let

H/ ∼:= {[m̂] : m̂ ∈ H} (5.21)

be the quotient set of H by ∼.
Let π1,π2, . . . , πN ! be the elements of the symmetric group of degree N . Further, let for

a 3N -dimensional vector �q = (q1, q2, . . . , q3N) the three-dimensional vector qn be defined
as

qn := (q3n−2, q3n−1, q3n); n = 1,2, . . . ,N. (5.22)

(Thus, if �q is composed of the generalized coordinates of N particular R-particles, then qn

consists of the generalized coordinates of the nth of these R-particles.) The subsets

μ̂i,j := {〈ζi; �q, �p〉 ∈ H : |qπj (1)| < |qπj (2)| < · · · < |qπj (N)|
} ;

i = 1,2, . . . ,

(
N

N

)
, j = 1,2, . . . ,N ! (5.23)

of H are pairwise disjoint:

μ̂i,j ∩ μ̂r,s = ∅ for i �= r or j �= s. (5.24)

Furthermore, for every two sets μ̂i,j and μ̂r,s there is a permutation σi,j,r,s of R-particles
bijectively mapping μ̂r,s to μ̂i,j :

{
σi,j,r,s(m̂) : m̂ ∈ μ̂r,s

} = μ̂i,j . (5.25)

Each equivalence class [m̂] ∈ H/ ∼ possesses in each of the sets μ̂i,j at most one repre-
sentative. If [m̂] possesses in one of the sets μ̂i,j a representative, then, due to (5.25), [m̂]
possesses in each of the sets μ̂i,j (exactly) one representative. In addition, the set

H \
(N

N )⋃

i=1

N !⋃

j=1

μ̂i,j =
{
〈ζi; �q, �p〉 ∈ H : i ∈

{
1,2, . . . ,

(
N

N

)}

∧∃n,m(n,m ∈ {1,2, . . . ,N} ∧ n �= m ∧ |qn| = |qm|)
}

(5.26)

of those phase space points of S that are contained in none of the sets μ̂i,j has the phase
space volume zero:

∥∥
∥∥
∥∥
∥

H \
(N

N )⋃

i=1

N !⋃

j=1

μ̂i,j

∥∥
∥∥
∥∥
∥

= 0. (5.27)

Thus, almost every equivalence class [m̂] possesses in each of the sets μ̂i,j exactly one
representative, i.e.,

∣
∣[m̂] ∩ μ̂i,j

∣
∣ = 1 for almost all [m̂] ∈ H/ ∼, (5.28)
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and therefore contains N!
(N−N)! phase space points:

|[m̂]| (5.20)= |[m̂] ∩ H| (5.27)=

∣
∣∣
∣∣
∣∣
[m̂] ∩

⎛

⎜
⎝

(N
N )⋃

i=1

N !⋃

j=1

μ̂i,j

⎞

⎟
⎠

∣
∣∣
∣∣
∣∣

=

∣
∣∣
∣∣
∣∣

(N
N )⋃

i=1

N !⋃

j=1

(
[m̂] ∩ μ̂i,j

)

∣
∣∣
∣∣
∣∣

(5.24)=
(N

N )∑

i=1

N !∑

j=1

∣
∣[m̂] ∩ μ̂i,j

∣
∣ (5.28)= N!

(N − N)! for almost all [m̂] ∈ H/ ∼ . (5.29)

5.6.2 Transition to Indistinguishability

The R-particles can be made indistinguishable by identifying with one another microstates
arising from each other through permutation of R-particles. All microstates that are repre-
sented by the phase space points of the same equivalence class [m̂] thereby merge to one
single microstate m̃ represented by each n̂ ∈ [m̂]. A macrostate M passes through this merg-
ing into the macrostate M̃, in which m̂ possesses the accumulated probability density

ρM̃(m̂) :=
∑

n̂∈[m̂]

ρM(̂n)
Postulate 5.1= |[m̂]|ρM(m̂). (5.30)

Of course, phase space points representing the same microstate possess the same probability

density in M̃:

m̂ ∼ n̂ ⇒ ρM̃(m̂)
(5.30)= |[m̂]|ρM(m̂)

Postulate 5.1= |[̂n]|ρM(̂n)
(5.30)= ρM̃(̂n). (5.31)

Further, M̃ satisfies the normalization condition (5.40).
In the following, the R-particles, made indistinguishable in the way just described, are

denoted R̃-particles.

5.6.3 Measurement of Mechanical Quantities

For distinguishable R-particles, a mechanical quantity Q takes on a particular value Q(m, t)

in every microstate m and at each point in time t . Q can be represented by a function Q̂ of m̂
and t :

Q(m, t) := Q̂(m̂, t). (5.32)

The function Q̂ may contain the values of the inner attributes of the R-particles as para-
meters. For a given ζi , Q̂(〈ζi; �q, �p〉, t) is a function Q̂ζi of �q, �p and t that may contain as
parameters only the values of the inner attributes of the ζi -particles, “inner ζi -particle val-
ues” for short. From Q̂ζi one obtains the function Q̂ζj by replacing the inner ζi -particle values
that appear in Q̂ζi as parameters by the corresponding inner ζj -particle values. Since all R-
particles are identical and thus agree in the values of their inner attributes, it holds that

Q̂(〈ζi; �q, �p〉, t) = Q̂ζi (�q, �p, t) = Q̂ζj (�q, �p, t)

= Q̂(
〈
ζj ; �q, �p〉 , t) ∀i, j ∈

{
1,2, . . . ,

(
N

N

)}
. (5.33)
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Of course, Q(m, t) does not depend on which axes of the phase space are assigned to
which particles. Therefore, Q̂(〈ζi; �q, �p〉 , t) does not change if one transposes two ζi -particles
pni,q

and pni,r
and at the same time interchanges the values of their inner attributes appearing

in Q̂ as parameters. Since pni,q
and pni,r

are identical, the interchange of the values of their
inner attributes is without effect, and so Q̂(〈ζi; �q, �p〉 , t) is invariant under transposition of

pni,q
and pni,r

. The transposition of a ζi -particle with an identical non-ζi -particle also does
not change Q̂(〈ζi; �q, �p〉 , t) because, for a suitable assignment of phase space axes to parti-
cles, the phase space coordinates �q, �p remain unaltered under this transposition, and so the
invariance immediately follows from (5.33). Finally, the invariance of Q̂(〈ζi; �q, �p〉 , t) under
transposition of two non-ζi -particles is trivial. Hence, Q̂ is invariant under permutation of
any R-particles:

m̂ ∼ n̂ ⇒ Q̂(m̂, t) = Q̂(̂n, t) ∀m̂, n̂ ∈ H. (5.34)

Accordingly, for indistinguishable R̃-particles, the representation of Q through

Q (m̃, t) := Q̂ (m̂, t) (5.35)

is well-defined.
The expectation value Q(M, t) [or Q(M̃, t), for indistinguishable R̃-particles] for the result

of a measurement of Q at time t in the macrostate M (M̃, respectively) is the weighted mean
of the values that Q takes on at time t in the individual microstates. Thus, for distinguishable
R-particles, it holds due to (5.32) that

Q(M, t) :=
∫

dHρM(m̂)̂Q(m̂, t). (5.36)

For indistinguishable R̃-particles, every microstate is represented by multiple phase space
points such that, when calculating Q(M̃, t), one has to be careful to integrate over only one
representative phase space point per microstate. According to (5.28), almost every equiva-
lence class [m̂] ∈ H/ ∼ possesses exactly one representative in μ̂1,1. Thus, for almost every
microstate m̃ there is exactly one phase space point in μ̂1,1 representing m̃. Hence, it holds
due to (5.35) that

Q(M̃, t) :=
∫

μ̂1,1

dHρM̃(m̂)̂Q(m̂, t). (5.37)

From this, considering (5.34), one obtains with a calculation analogous to (5.60),

Q(M̃, t) =
∫

dHρM(m̂)̂Q(m̂, t)
(5.36)= Q(M, t). (5.38)

In particular, for

Q̂ (m̂, t) ≡ 1 (5.39)

one obtains the normalization condition for M̃:
∫

μ̂1,1

dHρM̃(m̂)
(5.37),(5.39)= Q(M̃, t)

(5.38)= Q(M, t)
(5.36),(5.39)=

∫
dHρM(m̂)

(2.10)= 1. (5.40)
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5.6.4 Temporal Evolution

Let 〈t0〉 := 〈ζi; �q(t0), �p(t0)〉 be a particular phase space point at time t0 and, at any other point
in time t , let 〈t〉 := 〈ζi; �q(t), �p(t)〉 be the phase space point unambiguously determined by
the Hamilton equations

dqn

dt
= ∂Ĥ

∂pn

,
dpn

dt
= − ∂Ĥ

∂qn

; n = 1,2, . . . ,3N (5.41)

and the initial value 〈t0〉. The Hamilton function Ĥ represents the mechanical quantity “en-
ergy” and is, according to (5.34), invariant under permutation of R-particles. Thus, as will
be shown below, if at time t0 two phase space points 〈t0〉 and 〈t0〉′ arise from each other
through a certain permutation σ of R-particles, then, at any other time t , the phase space
points 〈t〉 and 〈t〉′ also arise from each other through σ :

〈t0〉′ = σ (〈t0〉) ⇔ 〈t〉′ = σ (〈t〉) . (5.42)

Proof The permutation σ of R-particles maps a phase space point 〈ζi; �q, �p〉 to the phase
space point

σ (〈ζi; �q, �p〉) = σ (〈ζi;q1, . . . , q3N,p1, . . . , p3N 〉)
= 〈

ζj ;qπ(1), . . . , qπ(3N),pπ(1), . . . , pπ(3N)

〉
. (5.43)

(π is a particular element of the symmetric group of degree 3N .) Now, let it hold that

〈t0〉′ = σ (〈t0〉) . (5.44)

Then, between the coordinates of

〈t0〉 = 〈ζi;q1(t0), . . . , p3N(t0)〉 and 〈t0〉′ =
〈
ζj ;q ′

1(t0), . . . , p
′
3N(t0)

〉
, (5.45)

there are, according to (5.43), the relations

q ′
n(t0) = qπ(n)(t0) and p′

n(t0) = pπ(n)(t0); n = 1,2, . . . ,3N. (5.46)

From this it follows that

∂Ĥ(〈t0〉′, t0)
∂q ′

n

(5.45)= lim
�q→0

Ĥ(〈ζj ;q ′
1(t0), . . . , q

′
n(t0) + �q, . . . ,p′

3N(t0)〉, t0) − Ĥ(〈t0〉′, t0)
�q

(5.46)= lim
�q→0

Ĥ(〈ζj ;qπ(1)(t0), . . . ,

nth position
︷ ︸︸ ︷
qπ(n)(t0) + �q, . . . ,pπ(3N)(t0)〉, t0) − Ĥ(〈t0〉′, t0)

�q

(5.43),(5.44)= lim
�q→0

Ĥ(σ (〈ζi;q1(t0), . . . ,

π(n)th position
︷ ︸︸ ︷
qπ(n)(t0) + �q, . . . ,p3N(t0)〉), t0) − Ĥ(σ (〈t0〉), t0)

�q
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(5.34),(5.45)= ∂Ĥ(〈t0〉, t0)
∂qπ(n)

(5.47)

and thus

p′
n(t0 + dt) = p′

n(t0) + dp′
n(t)

dt

∣
∣∣
t=t0

dt
(5.41)= p′

n(t0) − ∂Ĥ(〈t0〉′, t0)
∂q ′

n

dt

(5.46),(5.47)= pπ(n)(t0) − ∂Ĥ (〈t0〉 , t0)

∂qπ(n)

dt
(5.41)= pπ(n)(t0) + dpπ(n)(t)

dt

∣∣
∣
t=t0

dt

= pπ(n)(t0 + dt). (5.48)

Correspondingly, it holds that

q ′
n(t0 + dt) = qπ(n)(t0 + dt), (5.49)

and so, in total, one has

〈t0 + dt〉′ = 〈
ζj ;q ′

1(t0 + dt), . . . , p′
3N(t0 + dt)

〉

(5.49),(5.48)= 〈
ζj ;qπ(1)(t0 + dt), . . . , pπ(3N)(t0 + dt)

〉

(5.43)= σ (〈ζi;q1(t0 + dt), . . . , p3N(t0 + dt)〉)
= σ (〈t0 + dt〉) . (5.50)

Finally, if one divides the time period between t0 and t into an infinite number of infinites-
imal time intervals, then the successive application of (5.50) on these intervals yields the
claim (5.42). �

If, at a certain point in time t0, S is in the macrostate M(t0) [or M̃(t0), for indistinguishable
R̃-particles], then the macrostate M(t) [M̃(t), respectively] of S at time t results from the
temporal evolution of the phase space points; according to the Liouville equation, it holds
that

ρM(t)(〈t〉) = ρM(t0)(〈t0〉) ∀〈t〉 ∈ H (5.51)

and

ρM̃(t)(〈t〉) = ρM̃(t0)(〈t0〉) ∀〈t〉 ∈ H, (5.52)

respectively.
M(t) and M̃(t) are well-defined through (5.51) and (5.52): M(t) satisfies Postulate 5.1,

because, if two phase space points 〈t〉 and 〈t〉′ arise from each other through a permutation
σ of R-particles according to

〈t〉′ = σ(〈t〉), (5.53)

then it holds that

ρM(t)(〈t〉′) (5.51)= ρM(t0)(〈t0〉′) (5.53),(5.42)= ρM(t0)(σ (〈t0〉)) Postulate 5.1= ρM(t0)(〈t0〉)
(5.51)= ρM(t)(〈t〉). (5.54)
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Further, M(t) satisfies the normalization condition (2.10) (the proof of this essentially pro-
ceeds as the proof in [11]). Analogously, it can be shown that M̃(t) satisfies the relation
(5.31) and the normalization condition (5.40).

From

M̃(t0) := M̃(t0) (5.55)

at time t0 it follows that for every other time t ,

ρM̃(t)(〈t〉) (5.52)= ρM̃(t0)(〈t0〉) (5.55)= ρM̃(t0)
(〈t0〉) (5.30)= |[〈t0〉]|ρM(t0)(〈t0〉)

(5.51)= |[〈t0〉]|ρM(t)(〈t〉) (5.42)= |[〈t〉]|ρM(t)(〈t〉)
(5.30)= ρM̃(t)(〈t〉) ∀〈t〉 ∈ H (5.56)

and thus

M̃(t) = M̃(t). (5.57)

5.6.5 Mechanical Equivalence

The expectation value for the result of a measurement of a mechanical quantity Q is at any
point in time t the same for indistinguishable R̃-particles as for distinguishable R-particles:

Q(M̃(t), t)
(5.57)= Q(M̃(t), t)

(5.38)= Q(M(t), t). (5.58)

Thus, distinguishable R-particles and indistinguishable R̃-particles are mechanically equiv-
alent. In the next section (Sect. 5.6.6), it will be shown that distinguishable R-particles and
indistinguishable R̃-particles are equivalent with respect to the second law of thermody-
namics as well. The equivalence with respect to the second law does not follow from the
mechanical equivalence, since the entropy is not a mechanical quantity. Also, the second
law is not a consequence of the Liouville equation, since the Liouville equation is entropy
conserving [11] and therefore cannot describe irreversible processes (paradox of the constant
entropy [48]).

5.6.6 Entropy

For indistinguishable R̃-particles, the entropy S of a macrostate M̃ is defined as

S(M̃) := −k

∫

μ̂1,1

dHρM̃(m̂) ln
[
ρM̃(m̂)(2π�)3N

]
. (5.59)

[In the integration domain μ̂1,1, there is for almost every microstate m̃ exactly one phase
space point representing m̃ (cf. Sect. 5.6.3).]

5.6.6.1 Equivalence with Respect to the Second Law It holds that

S(M̃)
(5.59)=

(5.30),(5.29)
−k

∫

μ̂1,1

dH
N!

(N − N)!ρM(m̂) ln

[
N!

(N − N)!ρM(m̂)(2π�)3N

]

Postulate 5.1= −k

(N
N )∑

i=1

N !∑

j=1

∫

μ̂1,1

dHρM(σi,j,1,1(m̂))
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× ln

[
N!

(N − N)!ρM(σi,j,1,1(m̂))(2π�)3N

]

(5.25)= −k

(N
N )∑

i=1

N !∑

j=1

∫

μ̂i,j

dHρM(m̂) ln

[
N!

(N − N)!ρM(m̂)(2π�)3N

]

(5.27),(5.24)= −k

∫
dHρM(m̂) ln

[
N!

(N − N)!ρM(m̂)(2π�)3N

]

(2.10)= −k

∫
dHρM(m̂) ln

[
ρM(m̂)(2π�)3N

]− k ln
N!

(N − N)!
(2.11)= S(M) − k ln

N!
(N − N)! . (5.60)

Since S is closed with respect to particle exchange and, according to Sect. 2.3, R-particles
can neither be created nor annihilated during the observation period, k ln N!

(N−N)! is con-
stant in time. Thus, the change in entropy that S experiences during an examined process

is the same for distinguishable R-particles as for indistinguishable R̃-particles. Hence, dis-
tinguishable R-particles and indistinguishable R̃-particles are equivalent with respect to the
second law of thermodynamics. In particular, the GP1 does not pose a real contradiction
to the second law for either distinguishable R-particles or for indistinguishable R̃-particles
(see Sects. 6.1.2 and 3.1.3).

5.6.6.2 Thermodynamic Potential As mentioned in Sect. 4.3.3.2, for indistinguishable R̃-
particles, the equilibrium entropy as a function of its natural variables E,N, . . . is a ther-
modynamic potential; for distinguishable R-particles this role is adopted by the reduced
entropy (see Sect. 5.5). Due to

R(M)
(4.39)= S(M) − k ln

N!
(N − N)!

(5.60)= S(M̃), (5.61)

the reduced entropy for distinguishable R-particles agrees with the entropy for indistin-
guishable R̃-particles, and so the thermodynamic potentials are the same in both cases. This
confirms the equivalence with respect to the second law between distinguishable R-particles
and indistinguishable R̃-particles.

Remark 5.5 From (5.61) and (4.41) it follows that systems consisting of distinguishable R-
particles that are correlated only by Condition 4.5 become uncorrelated in the course of the
transition to indistinguishable R̃-particles.

5.6.6.3 Limiting Case N � N (Inherent Entropy) If the number N of particles in the
underlying particle set R is very much larger than the number N of the R-particles in S,
then the difference between S(M) and S(M̃) can be simplified:

S(M) − S(M̃)
(5.60)= k ln

N!
(N − N)!

N�N≈ k lnN
N = Nk lnN. (5.62)

Thus, for distinguishable R-particles, in the case N � N , every R-particle possesses an
additional inherent entropy (i.e., an additional entropy intrinsically tied to the particle) of
k lnN compared to indistinguishable R̃-particles. An R-particle brings with it this entropy
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when it is added to S and it carries this entropy away when it is removed from S. The
inherent entropy of an R-particle reflects the uncertainty about its identity: it is in principle
not possible to determine which of the N R-particles the particle in question is.

Remark 5.6 If the N R-particles form an ideal gas, then the entropy S(T ,N,V ) of this gas
becomes extensive in the limit N � N :

S(T ,N,V )
(5.62)= S̃(T ,N,V ) + Nk lnN

(3.7)= Nk

[
ln

V

N
+ 3

2
ln

mkT

2π�2
+ 5

2
+ lnN

]
. (5.63)

Together with the additivity of the entropy for N � N [cf. (5.18) and Remark 4.8], this leads
to the disappearance of the GP1 in the limit N � N . The absence of the GP1 in the limiting
case N � N was found before by van Kampen [44].

6 Resolution of the GP1

6.1 Distinguishable Identical Classical Particles

Let a set R of N pairwise distinguishable identical classical particles be given. Let the R-
particles each have mass m and no internal degrees of freedom.

6.1.1 Entropy of an Ideal Gas

As in Sect. 3.1.1, for an ideal gas of N (N � 1) R-particles confined to a vessel of volume V

at temperature T , (3.4) can be derived for the entropy. However, in the derivation of (3.4) the
possibility that there are particles of the same kind outside the vessel was disregarded; thus,
in the case of an ideal gas of N R-particles, (3.4) is not the entropy of the equilibrium state
characterized by T , N , and V , but, according to Theorem 5.3, the entropy of the minimal
state associated with that equilibrium state:

S(T ,N,V ) = Nk

[
lnV + 3

2
ln

mkT

2π�2
+ 3

2

]
. (6.1)

As per (5.12), this yields the entropy

S(T ,N,V ) =Nk

[
lnV + 3

2
ln

mkT

2π�2
+ 3

2

]
+ k ln

(
N

N

)
(6.2)

for the equilibrium state characterized by T , N , and V .

6.1.2 Resolution of the GP1

Two vessels of equal volume V each containing an ideal gas of N R-particles are combined
such that a single vessel of total volume 2V containing an ideal gas of 2N R-particles is
formed. The entropy of this combined system is S(T ,2N,2V ). Prior to the combination,
the two subsystems (i.e., the two individual vessels) each had an entropy of S(T ,N,V ).

Since the function S(T ,N,V ) in (6.2) is not homogeneous of degree 1 in the variables
N and V , it generally holds that S(T ,2N,2V ) �= 2S(T ,N,V ). Thus, if the entropy of the
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initial system consisting of the two individual vessels would be the sum of the entropies
of its two subsystems, that is, 2S(T ,N,V ), then the process of combining paradoxically
would be associated with a change in entropy (see Sect. 3.1.1). This, however, is not the
case; according to (5.18), the entropy of the initial system is

S(T ,N,V )+S(T ,N,V ) − k ln
N!(N − 2N)!

(N − N)!(N − N)!
(6.2)= 2Nk

[
lnV + 3

2
ln

mkT

2π�2
+ 3

2

]
+ k ln

[
N!

(N − 2N)!N !N !
]

(6.4)≈ 2Nk

[
ln 2V + 3

2
ln

mkT

2π�2
+ 3

2

]
+ k ln

(
N

2N

)

(6.2)= S(T ,2N,2V ) (6.3)

and thus is equal to the entropy of the system after the combination. Hence, the process of
combining does not lead to a change in entropy; the GP1 is resolved.

Remark 6.1 In (6.3), the relation

k ln

[
N!

(N − 2N)!N !N !
]

= k ln

[(
N

2N

)(
2N

N

)]
(3.11)≈ k ln

(
N

2N

)
+ 2Nk ln 2, (6.4)

which holds only approximately, was applied. An exact calculation yields a slightly larger
entropy for the combined system than for the initial system because after the combination
there need no longer be exactly N particles in each of the two subsystems [5].

Remark 6.2 If, for an ideal gas of N distinguishable identical classical particles confined to
a vessel of volume V at temperature T , the “localization within the vessel” is declared as
an inner attribute (cf. the second example in Sect. 2.6.2), then there is no uncertainty about
which particles are located in the vessel and (3.4) correctly expresses the entropy of the ideal
gas (cf. Sect. 6.1.1). However, if the “localization within the vessel” is declared as an inner
attribute, a combination of the vessel with another is ruled out (see Sect. 2.4), and so in this
case the GP1 does not arise in the first place.

Remark 6.3 Using the reduced entropy, the resolution of the GP1 can be shortened as fol-
lows. For the reduced entropy of an ideal gas of N R-particles, the Sackur-Tetrode equation
holds:

R(T ,N,V )
(5.19),(6.1)= Nk

[
lnV + 3

2
ln

mkT

2π�2
+ 3

2

]
− k lnN !

Stirling≈ Nk

[
ln

V

N
+ 3

2
ln

mkT

2π�2
+ 5

2

]
. (6.5)

The Sackur-Tetrode equation is homogeneous of degree 1 in the variables N and V . This,
together with the additivity (4.41) of the reduced entropy, implies that, in the case of the
two vessels considered above, the reduced entropy of the initial system equals the reduced
entropy of the combined system. Thus, due to (4.42), the entropies of the initial and the
combined system agree as well.
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6.2 Non-identical Particles

Let a set P := {p1,p2, . . . ,pN} of N pairwise non-identical (quantum or classical) particles
be given. For simplicity, let the P -particles have no internal degrees of freedom; let ml be
the mass of the P -particle pl (l = 1,2, . . . ,N).

6.2.1 Entropy of a P -harmonic Ideal Gas

Consider an ideal gas S of N P -particles confined to a vessel of volume V at temperature T .
There are

(
N

N

)
compositions ζ1, ζ2, . . . , ζ(N

N ) of S that consist of N P -particles. Let the com-

position ζi contain the P -particles pni,1 ,pni,2 , . . . ,pni,N
(ni,1, ni,2, . . . , ni,N ∈ {1,2, . . . ,N}).

If S has the composition ζi with certainty, then (3.1) yields its canonical partition function

Z(T , ζi,V ) =
N∏

j=1

V

(
mni,j

kT

2π�2

)3/2

=
[

V

(
mikT

2π�2

)3/2
]N

, (6.6)

where

mi := N

√√
√√

N∏

j=1

mni,j
(6.7)

is the geometric mean of the masses of all ζi -particles. From Z(T , ζi,V ) one obtains the
entropy

S(T , ζi,V )
(3.3)= Nk

[
lnV + 3

2
ln

mikT

2π�2
+ 3

2

]
. (6.8)

Now, let S be P -harmonic. According to Theorem 4.4, it holds for the conditional entropy
with respect to ζi that

S(T ,V | ζi) = S(T , ζi,V ). (6.9)

With this, the arithmetic mean of all conditional entropies of S is

S(T ,N,V ) = Nk

[
lnV + 3

2
ln

mkT

2π�2
+ 3

2

]
, (6.10)

where

m := N

√√√
√

N∏

l=1

ml (6.11)

is the geometric mean of the masses of all P -particles.

Proof It holds that

S(T ,N,V )
(6.9)= 1

(
N

N

)
(N

N )∑

i=1

S(T , ζi,V )

(6.8),(6.7)= Nk

⎡

⎢
⎣lnV + 3

2
ln

kT

2π�2
+ 3

2
+ 3

2

1
(
N

N

)
1

N

(N
N )∑

i=1

N∑

j=1

lnmni,j

⎤

⎥
⎦ . (6.12)
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Each of the N P -particles occurs in a total of
(
N−1
N−1

)
of the

(
N

N

)
compositions ζ1, ζ2, . . . , ζ(N

N );
hence, the double sum in (6.12) can be rearranged as follows:

(N
N )∑

i=1

N∑

j=1

lnmni,j
=

(
N − 1

N − 1

) N∑

l=1

lnml. (6.13)

One then obtains

S(T ,N,V )
(6.12),(6.13)= Nk

[

lnV + 3

2
ln

kT

2π�2
+ 3

2
+ 3

2

1

N

N∑

l=1

lnml

]

(6.11)= Nk

[
lnV + 3

2
ln

mkT

2π�2
+ 3

2

]
.

�

Finally, plugging (6.10) into (4.23) yields the entropy of S:

S(T ,N,V ) =Nk

[
lnV + 3

2
ln

mkT

2π�2
+ 3

2

]
+ k ln

(
N

N

)
. (6.14)

6.2.2 Resolution of the GP1 for P -harmonic Ideal Gases

Now, consider an ideal gas S consisting, for simplicity, of all N (N � 1) P -particles, which
is confined to a vessel of volume V at temperature T . Trivially, S is P -harmonic since there
is only one possible composition.

S is then divided into two equal subsystems S1 and S2 (N1 = N2 = N

2 ,V1 = V2 = V
2 ) by

inserting a partition. S1 and S2 are P -harmonic as well, since all
(

N
N
2

)
possibilities of how

the N P -particles can be distributed over the two subsystems are equiprobable.
S1 and S2 can be recombined to obtain the original system S by removing the parti-

tion. As reasoned in Sect. 3.1.1, a change in entropy in the course of this recombination
would be paradoxical (GP1). However, such an entropy change does not occur: S1, S2, and
S are all P -harmonic ideal gases. Comparison of (6.14) with (6.2) shows that the entropy
of a P -harmonic ideal gas agrees with the entropy of an ideal gas of distinguishable iden-
tical classical particles of mass m. Thus, applying (4.38), the GP1 can be resolved as in
Sect. 6.1.2.

6.2.3 Ideal Gases that Consist of P -particles and Are Not P -harmonic

Now, let the ideal gas S of all N P -particles again be partitioned into two equal subsystems
S3 and S4 (N3 = N4 = N

2 ,V3 = V4 = V
2 ). However, this time, let S3 and S4 not be P -

harmonic.
In order to prepare S3 and S4 such that they are not P -harmonic, one may, for example,

proceed as follows: One exposes the N P -particles of S to a vertical gravitational field and
then inserts a horizontal partition into S. The position at which the partition is inserted is
chosen such that the upper and the lower subsystem each contain N

2 P -particles. Due to
the gravitation, in the lower subsystem, compositions of heavier P -particles have a higher
probability than compositions of lighter P -particles; in the upper subsystem, the opposite is
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the case. Hence, neither subsystem is P -harmonic. After the partitioning of S, one continues
by adjusting the volumes of the two subsystems to V

2 by moving the partition. In doing so,
a particle exchange between the subsystems must be prevented in order for the composition
probabilities to remain unaltered.

By removing the partition, S3 and S4 can be recombined to a single undivided system of
total volume V and particle number N. In the absence of a gravitational field this recom-
bination is an irreversible process, since, if one reinserts the partition after equilibrium is
reached, then one obtains, instead of S3 and S4, two P -harmonic systems (see Sect. 6.2.2).
Hence, the process of combining S3 and S4 causes an increase in entropy, which of course
is not paradoxical.

Remark 6.4 Of course, the process of combining two ideal gases that consist of P -particles
and are not P -harmonic is not necessarily associated with an entropy increase. If, for exam-
ple, in equilibrium a partition is inserted into an ideal gas that consists of P -particles and is
not P -harmonic, then one obtains two ideal gases that also consist of P -particles and are not
P -harmonic. By removing the partition, these two gases can be recombined to the original
gas without changing the entropy.

7 Conclusion

The analysis of the GP1 in Sect. 3.2 shows that, for systems of distinguishable particles, it
is generally uncertain of which particles they consist. In order to be able to describe an en-
semble of possible particle compositions, the quantum-mechanical state space was defined
in Sect. 2.1.1 as the direct sum of many-particle state spaces (each many-particle state space
corresponding to a certain particle composition); analogously, the union of multiple phase
spaces was introduced in Sect. 2.1.2 as the set of representatives for classical microstates.
Further, in Sect. 2.2, the conventional definition for particle transposition was extended to
the case of the transposition of a system particle with a particle that is not a system particle.
The statistical treatment of systems of distinguishable particles was discussed in Sects. 4
(non-identical particles) and 5 (distinguishable identical classical particles). In both cases,
an underlying particle set, containing all particles that in principle qualify for being part of
the regarded system, was assumed to be known. First, in Sect. 4.1, it was shown that, for sys-
tems of distinguishable particles, the uncertainty about the particle composition contributes
to the entropy. Systems of distinguishable particles for which all possible compositions are
equiprobable were referred to as harmonic (Sect. 4.3). Whereas systems of distinguishable
identical classical particles are always harmonic due to Postulate 5.1 (cf. Sect. 5.2), har-
monicity is not a necessary property for systems of non-identical particles. Since in addition
the probabilities of the possible compositions of a closed system cannot change over the
course of time, for closed systems of non-identical particles the composition probabilities
are part of the complete characterization of an equilibrium state (Sect. 4.2.1). In Sect. 4.3.2,
it was noted that systems that are harmonic with respect to the same underlying particle
set are always correlated; thus, for harmonic systems, the entropy is not additive and, as a
consequence, loses its thermodynamic meaning. For harmonic systems, the reduced entropy
(instead of the entropy) is a thermodynamic potential (Sects. 4.3.3 and 5.5). In Sect. 5.6, it
was demonstrated that one has the choice of assuming identical classical particles to be dis-
tinguishable or indistinguishable; both possibilities are mechanically equivalent (Sect. 5.6.5)
as well as equivalent with respect to the second law of thermodynamics (Sect. 5.6.6.1). Fi-
nally, in Sect. 6, the resolution of the GP1 was demonstrated, applying the results deduced



826 H. Peters

in Sects. 4 and 5 (in Sect. 6.1.2 for gases of distinguishable identical classical particles, and
in Sect. 6.2.2 for harmonic gases of non-identical particles).

The resolution of the GP1 for distinguishable identical classical particles (Sect. 6.1.2)
closes a gap in the theory of classical statistical mechanics; contrary to popular belief
[19, 21, 38], identical classical particles can be assumed to be distinguishable without con-
tradiction. According to Sect. 5.6, it is not a matter of right or wrong whether one assumes
identical classical particles to be distinguishable or indistinguishable, but a matter of taste:
An argument for distinguishability is that one can adhere to the intuitive notion of particles
as individual objects; further, one deals with simpler integration domains if one assumes
identical classical particles to be distinguishable [17]. An argument for indistinguishability
is Ockham’s razor, since in this case there are no microstates that are experimentally in-
discernible; a further advantage of indistinguishable classical particles is that the entropy
generally is extensive and additive.

As already emphasized in Sect. 1, the GP1 does not only affect classical statistical me-
chanics; quantum systems can suffer from the GP1 as well (Sect. 3.1.1). Hence, the GP1
wrongfully faded into the background after the discovery of quantum mechanics.

The statistics of non-identical particles, presented in Sect. 4, does not only carry theoret-
ical weight; it is also fundamental for the statistical description of colloids (such as homog-
enized milk [41]). The equivalence between distinguishable and indistinguishable identical
classical particles, proven in Sect. 5.6, is, among other things, interesting from a philosoph-
ical view (see, e.g., [33, 36] and references therein). Last but not least, the results of the
present article shed new light on the GP2. The reason for the point of discontinuity, which
the GP2 addresses (cf. Sect. 1), depends on whether the particles remain distinguishable
or become indistinguishable at the transition from ‘similar’ to ‘identical’. If the particles
remain distinguishable, then, in the ‘identical’ limiting case (and only then), Postulate 5.1
takes effect and forces the harmonicity of the two gases with respect to the same underlying
particle set.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.
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